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Abstract

Stochastic processes and differential equations are both widespread math-
ematical models in many disciplines. In particular they are both standard
tools in telecommunications. The first motivation of this work is to ana-
lyze relationships between these stochastic and deterministic approaches, in
the framework of telecommunications modeling. We consider both stochas-
tic processes and differential equations as two suitable ways for modeling a
system, and we study a link between both representations.

In the literature, the approximation of stochastic systems by determin-
istic ones, usually modeled by differential equations, appear with different
flavors, under different assumptions and contexts and with many different
names: fluid limits, hydrodynamic limits, mean field approximations. These
ideas appear in many disciplines, for instance physics, biology, chemistry,
queuing theory, game theory. In this work we will use fluid limits as the
expression that best represents the topics addressed here.

The main objective of fluid limits is to analyze a complex stochastic sys-
tem studying a simplified model, commonly deterministic, and represented
by differential equations. This is a useful technique when the stochastic sys-
tem is difficult to analyze, or even difficult to simulate. Once we obtain this
approximation certain properties of the stochastic system can be derived
from the behavior of the deterministic one.

Usually these limits are obtained as the limit of a sequence of stochas-
tic processes in the fashion of the Law of Large Numbers, and represent
the mean behavior of a stochastic process. Properties as fixed points and
asymptotic behavior of the deterministic system obtained as limit are gen-
erally closely related with the stationary regime of the stochastic one. In
addition, another natural question is about the asymptotic distribution of
the system, in the sense of the relationship between the Law of Large Num-
bers and the Central Limit Theorem. Results in this context are also known
as diffusion approximations.

In this work we will address some of the previous topics in three different
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frameworks, all motivated by telecommunications modeling with stochastic
processes. In all of them we consider a sequence of Markov processes and
a limit process, obtained when features related with the size of the system
tends to infinity.

We first explore fluid limits for modeling Peer to Peer BitTorrent-like sys-
tems. We study BitTorrent models proposed in the literature, both stochas-
tic and deterministic, we compare those models, and we justify the passage,
by a limit construction, from a stochastic process to a fluid approximation
driven by a differential equation. We also analyze the asymptotic distribu-
tion.

As a second problem we deal with a Machine Repairman Model introduc-
ing phase-type distributions. This problem presents two main difficulties,
that are two different time scales and discontinuous transition rates. We
prove that the Markov process describing the system evolution converges
to a deterministic process with piecewise smooth trajectories. We analyze
the deterministic system by studying its fixed points, and we find different
behaviors depending only on the expected values of the phase-type distri-
butions involved. Concerning the asymptotic distribution we explore dif-
ferent scaling methods obtaining Gaussian and non-Gaussian distributions,
depending on the scaling and on the parameters of the stochastic processes.

The last problem addressed concerns Cognitive Radio Networks, where
we find a fluid approximation for the stochastic process that models the
number of primary and secondary users. In this system we also have dis-
continuous transition rates that lead to a fluid limit with piecewise smooth
trajectories. We analyze the fluid limit in transient and stationary regime.
We also obtain the asymptotic distribution for the system in some cases, and
we find different behaviors and obtain Gaussian and non-Gaussian asymp-
totic distributions.
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Resumen

Los procesos estocásticos, y en particular los procesos de Markov y las
cadenas de Markov, han sido modelos matemáticos masivamente utiliza-
dos para estudiar diversos fenómenos. Por su parte las ecuaciones dife-
renciales también son herramientas ampliamente utilizadas en el modelado
matemático. En muchas de las aplicaciones de matemática que conocemos
ambos tipos de modelos y de abordajes coexisten para analizar los mismos
problemas.

La motivación de este trabajo surge de la existencia de estos dos tipos
de acercamientos a diferentes problemas en telecomunicaciones, y la primera
pregunta que planteamos es cómo se puede establecer una relación entre
modelos estocásticos y determińısticos para un mismo objeto. Por otra
parte, cuando existe esta relación, interesa saber qué tipo de caracteŕısticas
de uno de los modelos puede brindar información sobre el otro, aśı como
medir, en algún sentido, qué tan exacta es esa aproximación. Para esto es
necesario estudiar en qué marco podemos analizar la relación entre modelos
estocásticos y determińısticos y cuáles son las herramientas y técnicas in-
volucradas. En la literatura encontramos una amplia variedad de problemas
y técnicas en este sentido, con diferentes nombres, y múltiples variantes, pero
que comparten ciertas caracteŕısticas esenciales. Aśı encontramos denom-
inaciones como ĺımites fluidos, aproximaciones tipo campo medio, ĺımites
hidrodinámicos. Estas denominaciones involucran ideas matemáticas usa-
das desde larga data en diferentes problemas, por ejemplo en f́ısica, bioloǵıa,
qúımica, teoŕıa de colas, teoŕıa de juegos, que buscan simplificar modelos es-
tocásticos complejos, planteando para ellos su aproximación determińıstica.

Un contexto general para analizar estas relaciones se conoce como ĺımites
fluidos. Este será el objeto de estudio en este trabajo, en particular su
recorte a modelos de telecomunicaciones. La finalidad es entonces aproxi-
mar modelos, con diferentes tipos de complejidades a la hora de su análisis,
mediante modelos más sencillos. La dificultad para tratar los modelos es-
tocásticos puede estar dada por las dependencias internas en el sistema, por
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la cantidad de individuos, y pueden ser dif́ıciles de estudiar anaĺıticamente
o incluso mediante simulaciones, ya que estas pueden ser computacional-
mente muy costosas. Sin embargo estos modelos muchas veces pueden sim-
plificarse a modelos determińısticos gobernados por ejemplo por ecuaciones
diferenciales. Mediante estas aproximaciones en gran parte de los casos el
comportamiento del proceso estocástico original puede analizarse a partir
de caracteŕısticas del modelo determińıstico.

En general estas aproximaciones de procesos estocásticos son asintóticas
en algún parámetro del sistema, en muchos casos vinculado a su tamaño,
y lo que se obtiene es un ĺımite en media, en el sentido de la Ley de los
Grandes Números. Entonces una de las preguntas que surge es la veloci-
dad de convergencia. Por ese motivo, el otro tema que se aborda en esta
tesis es la convergencia tipo Teorema Central del Ĺımite, que también se
denomina aproximación por difusiones. Aśı, un segundo objetivo es, una
vez que un sistema estocástico se aproxima por uno determińıstico, estudiar
qué distribución tiene el error de la aproximación.

En lo que sigue estudiamos tres modelos de ĺımites fluidos motivados
en problemas que aparecen en telecomunicaciones. Estos tres modelos ana-
lizados permiten ver el funcionamiento de la técnica de ĺımites fluidos en
diferentes aplicaciones, y mostrar resultados del comportamiento asintótico
de los sistemas a partir del análisis de sus ĺımites determińısticos.

Este trabajo consta de tres partes, la primera dedicada al estudio de
redes par a par, en particular al análisis de un modelo para el protocolo
BitTorrent. Para ese modelo se estudian ĺımites fluidos, se describe cómo se
obtienen estos ĺımites y se estudian aproximaciones Gaussianas. Parte de
los resultados de este caṕıtulo se encuentran en [AMR11].

La segunda parte de la tesis presenta un modelo de teoŕıa de colas de
fallas y reparaciones. Para ese modelo se introducen distribuciones tipo fase,
y se obtiene un ĺımite fluido y un ĺımite en distribución. En este caso el
sistema presenta diferentes escalas de tiempo, al mismo tiempo que da lugar
a un ĺımite determińıstico que es un sistema dinámico diferenciable a tramos.
A nivel de distribución asintótica también encontramos ĺımites Gaussianos
y no Gaussianos. Estos resultados fueron presentados en [AMR13].

El tercer problema abordado consiste en el estudio de ĺımites fluidos y
distribución asintótica en un modelo para redes cognitivas. Aqúı tenemos
un sistema dinámico diferenciable a tramos y para la distribución asintótica
podemos obtener un resultado del tipo Teorema Central del Ĺımite en al-
gunos casos, mientras que en otros, con otro escalado, se obtiene una dis-
tribución asintótica no Gaussiana. Algunos resultados de este caṕıtulo se
presentaron en [RAB15].

4



Acknowledgements

This work was partially supported by the following projects:

STIC-AmSud 2018 “Algorithms for the Capacity Crunch problem in Op-
tical Networks” (ACCON),
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Introduction

There are several examples of complex stochastic systems for which analytic
expressions cannot be derived, or that are even difficult to simulate, as a
Markov chain with a huge number of states. The complexity of the system
may be for example due to its size or due to its dependence structure. For
large systems, numerical simulations with large state spaces would also be
very costly. However, in many cases those systems can be studied by ana-
lyzing deterministic models, obtained as asymptotic approximations of the
original ones. The deterministic systems in most cases are described by an
ordinary differential equation (ODE), by a piecewise smooth dynamical sys-
tem (PWSDS), by a partial differential equation (PDE) or by a difference
equation (DE). These kind of limits are known as fluid limits, or, in some
variants, as mean field approximations or hydrodynamic limits. The lim-
its described before are deterministic systems, but there are also stochastic
fluid limits, out of the scope of this work.

The study of fluid limits is a widely developed technique, very useful
for the analysis of large Markov systems. As an example, let us consider
the fluid limit for a M/M/1 queue [Rob03] with arrival rate λ and service
rate µ. Let X(t) be the number of units in the system at time t and let
X̂N (t) = X(Nt)/N be the scaled number of units. Time is accelerated
by a factor N , and the initial state is also scaled by the same factor, for
example X(0) = Nx0, and then X̂N (0) = X(0)/N = x0. Whenever the
scaled initial condition converges to x0 with N , then the process X̂N can
be approximated, for large N , by the deterministic solution to x′ = λ− µ if
x > 0, x′ = 0 if x = 0. For λ < µ the equation defines a piecewise smooth
dynamical system, with a solution for the initial condition x0 that is smooth
on [0, x0/(µ− λ)) and (x0/(µ− λ),∞) (Figure 1). If the initial condition is
0, the solution remains at zero.

Other examples in [Rob03] are the M/M/∞ queue and the M/M/N/N
queue. Let λN be the arrival rate and µ the service rate in both cases
and let X̃N be the number of units in the system. The scaling is different

10



0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Time

P
ro

po
rt

io
n 

of
 u

se
rs

 

 
N=5
N=10
N=50
N=100
Fluid limit

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time

P
ro

po
rt

io
n 

of
 u

se
rs

 

 
N=10
N=50
N=100
N=1000
Fluid limit

Figure 1: Left: M/M/1 queue. Scaled process X̂N (t) for different values
of N and fluid limit (λ = 1, µ = 1, x0 = 8). Right: M/M/∞ queue.
Scaled process XN (t) for different values of N and fluid limit (λ = 1, µ = 1,
x0 = 0).

from the M/M/1, as time is not scaled, only the arrival rate is accelerated,
and the total service rate scales with the number of units in the system.
The scaled number of units XN = X̃N/N converges, provided the initial
condition converges to a constant, to the solution to x′ = λ − µx for the
M/M/∞ queue (Figure 1), and to the solution to x′ = λ − µx, if x < 1,
x′ = 0 if x = 1, in the M/M/N/N model. In the last case, we find again
a piecewise smooth dynamical system, that converges exponentially fast to
ρ = λ/µ if ρ < 1 and to 1 if ρ ≥ 1.

Fluid limits have been used for particle systems, biology, epidemics, game
theory, computer science models, as well as in the study of telecommunica-
tion networks. There are many examples of the latest, to mention some of
the first works that addressed different topics in telecommunications mod-
eling, we have for instance modeling internet protocols like TCP [TM06],
wireless systems [BMP08, BJLM16], queuing models [MMR98, Gra00], game
theory [BLB08]. We also find in this framework different approaches in the
characterization of the models and limits obtained. There are studies of fluid
limits and mean field approximations considering systems with discrete time
and deterministic approximations in discrete time by means of difference
equations [LBMM07], as well as systems in discrete time with approxima-
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tions in continuous time, involving ODEs [BLB08] and systems in continu-
ous time with approximations in continuous time, involving ODEs [Bor11a],
PWSDS [Bor11a, GG12, Bor16] or PDEs [CLBR09, PF12].

Generally speaking, starting from a stochastic model the objective is to
find a deterministic approximation for the original process. This introduces
the problem of finding the suitable scale for the approximation. For example,
as we mentioned previously, some classical results in queuing theory consider
a sequence of stochastic processes indexed by an integer N , where some key
state variable appears divided by N , and the time variable is multiplied
or accelerated by the same factor, obtaining a deterministic limit when N
goes to infinity (as in the case of the M/M/1 queue). In addition, in other
queuing models (as in the M/M/∞), or in other areas such as in biology or
in the analysis of epidemic phenomena, a typical scaling consists in dividing
by N , and in considering transition rates increasing with N (jumps are of
order 1/N and transition rates of order N , which means that the product
of jump and transitions remains or tends to a constant as N increases). We
refer to [Rob03, HW81, MMR98] as references for this and other scaling
regimes, under which there are several limit results.

Different mathematical tehniques are involved in order to obtain these
results, as for example the random time change for stochastic processes
introduced by Kurtz [EK86] or a martingale approach, via exponential or
L2 martingales [SW95, Rob03, DN08].

Complementary to fluid limits, and closely related, mean field approxi-
mations come from physics, used there to study systems with a large number
of interacting particles. When the number of particles increases each parti-
cle behaves as if it were under the action of a global force, the mean field,
due to the influence of the other particles in the system. One of the main
applications of this approach is related with procedures for fast simulation of
systems, where, instead of simulating the whole system, a single individual is
simulated alone and the whole behavior of the rest of the system is replaced
by its mean field limit. Many applications to telecommunications appeared
in the literature. For instance [LBMM07, BLB08, CLBR09, BMP10] and
the references therein cover a wide range of techniques and applications.
Further, mean field methods have been applied to game theory and opti-
mal control, all in the framework of telecommunication research (see for
example [TLBEAA09, GGLB10] and references therein). In mean field ap-
proximations we can distinguish two steps: the first one is focused on the
occupation measure limit, that is, the asymptotic proportion of individuals
in each state, and the second one is focused on the decoupling assumption,
which means that, asymptotically, the state of each individual is indepen-
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dent of the state of the others. A very frequent approach to the first step
consists in proving the limit with the same techniques as in the fluid limits
case. The proof of the asymptotic independence relies in limit theorems as
in [Szn91].

As general references on the mathematical tools needed for fluid limits
and mean field approximations, with emphasis in applications in telecommu-
nications, whose techniques are taken in this work, we refer to [EK86, SW95,
Rob03, DN08, LB10a, BHLM13]. [EK86] is a classical reference, that treats
fluid limits and diffussion approximations, especially in Chapter 11 (Density
dependent population process). [SW95] presents fluid limit closely related
with large deviations techniques, but also addresses many problems stated
here, as convergence in stationary regime and limits for Markov processes
with discontinuous transition rates. [Rob03, DN08] present classical results,
obtained mostly with martingale techniques. [LB10a, BHLM13] and refer-
ences therein specially cover problems with discontinuous transition rates
and convergence in stationary regime.

Outline

This thesis is divided in three chapters, motivated by three different prob-
lems in telecommunications, where in each case we study a stochastic model
and its derived fluid limit and asymptotic distribution, finding different tech-
nical issues in each case and also considering in some cases different ap-
proaches from the literature. All problems and results are illustrated with
simulations. The appendices summarizes some background material.

Peer to Peer

The first chapter studies fluid limits for modeling peer to peer networks, in
particular BitTorrent-like systems.

Peer to peer (P2P) networks are decentralized networks that avoid the
traditional client/server model, and where users are both, at the same time,
servers and clients.

One of its most popular protocols is BitTorrent [Coh03] for file sharing
applications. BitTorrent divides the file into small pieces called chunks.
Each peer connects to others and downloads simultaneously different chunks.
There are two types of peers: leechers and seeds. Leechers download parts
of the file from other peers and upload parts of the file to other leechers.
Seeds have all the file and only remain in the system to help leechers to
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get missing file parts. The problem addressed here consists on modeling the
number of leechers and seeds in a BitTorrent network.

Based on well known models from the literature we analyze the passage
from stochastic models to deterministic ones, both in transient and in sta-
tionary regime. We also study the asymptotic distribution of the difference
between the stochastic process and its fluid limit in transient regime, and
the limit of this distribution when time goes to infinity.

Machine Repairman Model

The second chapter analyzes a Machine Repairman Model. The Machine
Repairman Model (MRM) is a basic Markovian queue representing a finite
number N of machines that can fail independently and, then, be repaired
by a repair facility. The latter, in the basic model, is composed of a single
repairing server with a waiting room for failed machines managed in FIFO
(first in, first out) order, in case the repairing server is busy when units
fail. In Kendall’s notation, this is the M/M/1//N model, specifying that
lifetimes and repair times are exponentially distributed.

This M/M/1//N model is well known and widely studied in queuing
theory and in many applications, as for example in telecommunications or
in reliability, where most of the studies look at the queue in equilibrium.

The model is a precursor of the development of queuing network theory,
motivated first in computer science. In particular, Scherr from IBM used
it in 1972 for analyzing the S360 OS (see [Lav83]). Many extensions of
the basic model have been studied, considering more than one repairing
server, different queuing disciplines, and other probability distributions for
the lifetime or repair time.

In this work we analyze a repairman problem with N working units that
break randomly and independently according to a phase-type distribution.
Broken units go to one repairman where the repair time also follows a phase-
type distribution (that is, a PH/PH/1//N model). We consider a scaled
system, dividing the number of broken units and the number of working
units in each phase by the total number of units N and accelerating the
repairman with the same factor. The scaled process has a deterministic
limit when N goes to infinity.

The first problem that the model presents is that there are two time
scales: the repairman changes its phase at a rate of order N , whereas the
total scaled number of working units changes at a rate of order 1.Another
problem is that transition rates are discontinuous because of idle periods at
the repairman. Thus, we obtain a piecewise smooth dynamical system as
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fluid limit, for which we study fixed points and stability. Finally we analyze
the asymptotic distribution in the exponential case.

Cognitive Radio Networks

The third chapter studies fluid models in the context of cognitive networks.
Cognitive Radio Networks (CR networks) have emerged in the last years as a
solution of two problems: spectrum underutilization and spectrum scarcity.

With the rapid development of wireless communications, the demand on
spectrum has been growing dramatically resulting in the spectrum scarcity
problem: unlicensed bands are too crowded while licensed bands are vastly
underutilized.

CR Networks has been proposed as a promising technology to solve that
problem by an intelligent and efficient dynamic spectrum access. In this new
paradigm we can identify two classes of users: primary (PU) and secondary
(SU). PUs are the licensed users, they have allocated a certain portion of
spectrum. SUs (also called cognitive users) are devices which are capable of
detecting unused licensed bands and adapt their parameters for using them.

The main idea of CR networks is to dynamically reallocate unused li-
censed frequency bands to secondary users.

The focus of the third chapter is on the analysis and characterization
of a dynamic spectrum sharing mechanism where primary users have strict
priority over secondary ones.

We develop a stochastic model for primary and secondary users in cog-
nitive radio networks and analyze it by fluid limits, with the objective of
proposing some way of admission control for secondary users in order to
guarantee certain quality of service requirements, in terms of loss probabil-
ity, for those secondary users in the network.

Contributions

Peer to Peer

In the first chapter we explore models proposed for the analysis of BitTorrent
P2P systems and we provide the arguments to justify the passage from the
stochastic process, under adequate scaling, to a fluid approximation driven
by an ODE.

We prove uniform almost sure convergence in compact time intervals.
We also explore the link between the stationary regime of the stochastic
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models and the fixed points of the associated ODEs. Finally, we analyze the
asymptotic distribution of the scaled process.

The contributions consist first in the mathematical justification that the
deterministic fluid models presented in [QS04] and [RAR10] are fluid limits
of stochastic models. En each case we define a stochastic model and con-
struct a sequence of stochastic processes such that, under adequate scaling,
converges to a deterministic model driven by an ODE.

The second contribution is the proof of the existence of a stationary
regime for each process in the sequence and then of the fact that the sequence
of processes in stationary regime converges to the ODE’s fixed point.

Finally we describe the asymptotic distribution. We prove that the dif-
ference between the scaled process and the deterministic one can be approx-
imated by a Gaussian process in transient regime and we also describe the
limit of this process when time goes to infinity.

Some of the results presented in the first chapter are presented in [AMR11].

Machine Repairman Model

In the second chapter we analyze a repairman problem with N working
units that break randomly and independently according to a phase-type
distribution. Broken units go to one repairman where the repair time also
follows a phase-type distribution (that is a PH/PH/1//N model).

In our main result we prove that the scaled Markovian multidimensional
process describing the system dynamics converges to an ODE solution when
N tends to infinity. The convergence is in probability and takes place uni-
formly in compact time intervals (u.c.p. convergence). In this case the de-
terministic limit, the solution to the ODE, is only piecewise smooth.

We analyze the properties of this limit, and we prove the convergence
in probability of the system in stationary regime to the deterministic fixed
point. We also find that this fixed point only depends on the repair time by
its mean. As a matter of fact, when in equilibrium, if the repair times are
exponentially distributed, the distribution of the number of broken machines
has the insensitivity property with respect to the lifetime distribution (only
the latter’s mean appears in the former). Although this behavior may be
expected because of the scaling, it is not straightforward. In addition, the
whole phase-type lifetime distribution takes part in the result. Different
lifetimes with the same mean give different behaviors, both in the transient
and in the stationary regimes.

The analysis of the asymptotic distribution of the difference between the
stochastic process and its fluid limit presents technical problems because the
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limit is non-differentiable. We address these issues only in stationary regime
for the exponential case.

Some results presented in the second chapter are included in [AMR13].

Cognitive Radio Networks

The main contribution of this chapter is the analysis and characterization
of a possible model of spectrum sharing in CR networks. This spectrum
sharing mechanism is designed in order to improve the average utilization of
the spectrum while ensuring a small probability of interruption to secondary
users.

We consider a Markov chain that represents the population of the differ-
ent types of users in the system. We formulate the associated fluid model
and we study its deterministic solutions.

We the Markov model for users and two simple admission control criteria,
one deterministic and one probabilistic, that for a system with a large num-
ber of users, guarantees with high probability that secondary users which
enters in the system will not have service interruptions.

We study the fluid limit and its fixed points, with and without admission
control, together with its asymptotic distribution. We find non-differentiable
trajectories for the limit process and, depending on the load of the system,
Gaussian and non-Gaussian asymptotic distribution.

This chapter is part of a joint work with C. Rattaro and P. Belzarena,
presented in [RAB15], some results are part of C. Rattaro’s PhD thesis [Rat18]
and of a submitted paper [RABM19].
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Chapter 1

Peer to Peer

This chapter presents our work on modeling Peer to Peer (P2P) applica-
tions, in particular BitTorrent. We make a brief presentation of general
P2P networks and then we describe the BitTorrent protocol. We focus on
some aspects of BitTorrent modeling. In Section 1.1 we summarize and
analyze different models and results from the literature that motivate and
are related with this work. We state our stochastic model for BitTorrent
networks in Section 1.2, then we show some numerical examples, simulated
in order to illustrate different models, in Section 1.3, and present the re-
sults in Section 1.4 about fluid limits and in Section 1.5 about asymptotic
distribution.

Peer to peer networks are decentralized networks that avoid the tradi-
tional client/server model, and where users are, at the same time, servers and
clients. There is not a central entity that rules the network, and peers are
organized in a distributed way. P2P networks are used as content delivery
networks, and originally were thought for file sharing, but with some modi-
fications P2P protocols have been adapted also for streaming. At the begin-
ning P2P file sharing became very popular with the development of Napster
by 2000, devoted to MP3 file sharing between users. After that many appli-
cations appeared, as Gnutella, Kazaa, eDonkey, BitTorrent [QS04].

There exist different P2P protocols, some based on unstructured net-
works, others with networks with some kind of structure, and hybrid ones.
In unstructured P2P networks nodes are indistinguishable, that is the most
pure version of P2P, whereas in structured P2P networks there are selected
nodes that help to organize content delivery. For example in the BitTorrent
case, there are some nodes that gather information from users and help to
connect peers with each other.
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There are also single-torrent and multi-torrent networks, that means
that there is only one content distributed between users, or there are several
different contents distributed for the same set of users.

In the last decades research about P2P networks was deeply developed.
Concerning more theoretical models, in 2004, Yang and de Veciana [YdV04]
and Qiu and Srikant [QS04] pointed out the relevance of P2P traffic, for file
sharing applications. The major advantage of P2P networks, first revealed
in practice, and then thoroughly studied with different models, is that its
performance scales with the number of users. As for classical client/server
applications performance degrades as the number of users increases, the
goal of P2P networks is to maintain or even improve performance when this
number increases. On the other hand, one of the main challenges of P2P
networks is to guarantee the cooperation of users, and to deal with users
that consume resources from the network but are not disposed to share their
own.

The first works in P2P networks for file sharing were mostly focused
in protocols, network design, and also in traffic measurement [IUKB+04,
GCX+05, PGES05, GCX+07]. Then works on modeling and performance
evaluation appeared, and these are the results that motivate our approach
and are addressed later in this work. Streaming P2P networks also opened
other research lines, related with real time applications and searching and
caching content in P2P networks. (See for example [CRRB+08, SSY11] and
references therein.)

BitTorrent is a peer to peer protocol, introduced by Bram Cohen [Coh03]
for file sharing over a network. BitTorrent divides the target file into small
files (chunks). Each peer connects to others and downloads from them dif-
ferent chunks. For this purpose there is a centralized controlling software
(tracker). Peers ask the tracker for a file and the tracker returns a list of peers
randomly chosen among those that have the file. Then each peer connects
to them, see the chunks they have and ask for their missing chunks. Each
peer can upload (unchock) only to four peers, the ones with best download-
ing bandwidth. Periodically each peer performs what is called optimistical
unchocking, exploring other peers, and can upload chunks to a fifth peer. In
addition, BitTorrent implements algorithms to search chunks, that prevent
that some chunks become more difficult to obtain and that give preferences
to peers that have almost finished downloading the file. These are the rarest-
first policy and the endgame mode. There are two types of peers: leechers
and seeds. Leechers download parts of the file from other peers and upload
parts of the file to other leechers. Seeds have all the file and only remain in
the system to help leechers to get missing file parts, they are altruist nodes.
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In the literature authors point out several issues to be addressed when
studying BitTorrent. One is peer evolution, that is the dynamics of leechers
and seeds in the system. Other issue is the scalability of the network, that
means the analysis of how performance of the network is affected by the
number of users. The efficiency in file sharing is another topic of discussion,
concerning how to match peers in order to improve the way of obtaining
their missing chunks. In addition, we have the problem of incentives. P2P
networks have, as one of their main drawbacks, what is called free riders,
that are peers that download files from the network but do not upload their
own files. Incentive policies try to discourage this type of users.

In this chapter we first describe some BitTorrent models in the liter-
ature in Section 1.1. We focus on the fluid models presented in [QS04]
and [RAR10]. For these fluid models we aim to state a stochastic model
and properly justify the passage from the stochastic model to the fluid one.
We also want to find a fluid approximation for the BitTorrent model pre-
sented in [YdV04]. For this purpose in Section 1.2 we present stochastic
models for BitTorrent, suitable to find a fluid limit, considering the differ-
ent cases studied in [YdV04, QS04, RAR10]. In Section 1.3 we illustrate
these models by simulations. In Section 1.4 we derive the fluid limit for the
stochastic models proposed in Section 1.2, properly scaled by a parameter
N that goes to infinity, and that can be interpreted as the scaling size of
the system. We obtain as a result the fluid model from [QS04], and as a
generalization the model in [RAR10]. We also stablish a fluid limit for the
model presented in [YdV04]. In [QS04] and [RAR10] the initial model is
deterministic, however both seem to assume an implicit stochastic model.
We, instead, consider a sequences of stochastic models that properly scaled
converge to the deterministic ones. On the other hand, in [YdV04] the
system is described by a Markov chain, but there is not a deterministic ap-
proximation, so here we scale its original system and find its related fluid
limit. Then we justify the study of stationary regime by means of the study
of fixed points for the ODE obtained as fluid limit. In [QS04] the station-
ary regime is represented by the ODE’s fixed point, and the ODE is also
deeply analyzed in [QS08]; here we justify this approximation. Finally in
Section 1.5 we describe the asymptotic distribution. We find a limit in the
sense of the Central Limit Theorem for the difference between the stochas-
tic process and the fluid limit. This Gaussian approximation also appears
in [QS04] as an additional model, but not explicitly obtained as a limit. We
formulate this result as a consequence of Section 1.4 and we also analyze the
Gaussian limit distribution when time goes to infinity.
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1.1 BitTorrent models in the literature

In this section we describe several BitTorrent models studied in the litera-
ture, that motivated our model.

1.1.1 A Markov chain model

We first describe a stochastic model by Yang and de Veciana in [YdV04].
The BitTorrent network is described first by a deterministic model, and then
using a branching process for the transient regime and a Markov model for
the stationary regime.

For the Markov model, the following parameters are considered:

X(t): number of leechers at time t,

Y (t): number of seeds at time t,

λ: arrival rate (Poisson) of peers,

µ: uploading/downloading rate for each peer,

η ∈ [0, 1]: efficiency factor, a constant equal to the fraction of leechers
uploading chunks,

γ: leaving rate for seeds.

They define the following transition rates, where q((x, y), (x′, y′)) is the tran-
sition rate from state (x, y) to state (x′, y′), for states in N×N+, where x is
the number of leechers and y is the number of seeds:

q((x, y), (x+ 1, y)) = λ (arrival of a new peer),

q((x, y), (x − 1, y + 1)) = µ(ηx + y) (a leecher successfully finishes down-
loading the file),

q((x, y), (x, y − 1)) = γy (a seed leaves the network).

The rationale behind transition q((x, y), (x− 1, y+ 1)) = µ(ηx+ y) is that if
all leechers and seeds have the whole file the total uploading/downloading
rate is µ(x+y). The factor η is then introduced in order to take into account
leechers that do not have the whole file, which are in general less efficient
than seeds as servers.

Once stated the Markov chain model in [YdV04] the stationary distri-
bution of this processes is computed numerically, and the analysis considers
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different metrics of performance, as throughput and delay. Results in tran-
sient and stationary regime are compared with traffic measurements. In
addition the authors present incentives to users in order to improve the
performance.

1.1.2 A deterministic fluid model

Now we describe the dterministic fluid model proposed by Qiu and Srikant
in [QS04], based on the stochastic one of [YdV04]. In this model the evolu-
tion of leechers and seeds is described by an ordinary differential equation.
The fluid model also considers two aspects that are not discussed in [YdV04]:
the first one is that leechers may leave the system before finishing their
download (this is called an abandon) and the second one is that a capacity
restriction related to the time needed to finish a download is introduced.
This time depends on the uploading capacity of peers (as in [YdV04]) but
it also depends on their downloading capacity. This restriction makes the
model a switched linear system.

The fluid model is built as follows:

x(t): number of leechers at time t, seen as a real number,

y(t): number of seeds at time t, seen as a real number,

λ: arrival rate of peers,

µ: uploading rate for each peer,

c: downloading rate for each peer,

θ: individual leaving rate for leechers,

γ: individual leaving rate for seeds,

η ∈ [0, 1]: efficiency factor, that takes into account the efficiency of the file
sharing mechanism ([QS04] provides a detailed analysis of η),

The maximal total uploading rate is µ(ηx+y), the maximal total download-
ing rate is cx, and the restriction may be in the upload or in the download.
The effective downloading rate is thus min(cx, µ(ηx+ y)). The evolution of
the number of leechers and seeds is described by the following ODE:{

x′ = λ−min(cx, µ(ηx+ y))− θx,
y′ = min(cx, µ(ηx+ y))− γy. (1.1)
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There is a line y = (c/µ − η)x where the behavior of the system changes
because of the term min(cx, µ(ηx+y)), dividing the state space in two zones.

The authors state that the average number of leechers and seeds in sta-
tionary regime are the values of the ODE’s fixed point (x∗, y∗), where they
study local stability, and derive the average downloading time from an ap-
proximation of Little’s law. They also show a good fitting with simulations
of the BitTorrent protocol and with real traces, specially when the arrival
rate λ is high. In a posterior paper global stability is proved by Qiu and
Sang [QS08]. In addition they give a detailed analysis of the efficiency factor
η and prove that in most systems this factor is close to 1. Their argument
relies on the rarest first policy, that guarantees that chunks are distributed
in a uniform fashion, and in the presence of a large number of chunks for
each target file. Finally the variability is modeled by an Ornstein-Ulhenbeck
process centered at the deterministic system. The incentive policy is studied
by optimizing the selfish behavior of peers, obtaining a Nash equilibrium.

1.1.3 High and low tolerance leechers

Based on [QS04], Rivero and Rubino in [RAR10] consider a fluid model for
a BitTorrent network with different classes of peers. There are two classes
of leechers: high tolerance leechers and low tolerance ones.

The parameters are the following:

xa(t): number of high tolerance leechers at time t,

xb(t): number of low tolerance leechers at time t,

y(t): number of seeds at time t,

λa: arrival rate of high tolerance leechers,

λb: arrival rate of low tolerance leechers,

µ: uploading rate for each peer,

c: downloading rate for each peer,

θa: leaving rate for high tolerance leechers,

θb: leaving rate for low tolerance leechers, with θb > θa,

γ: leaving rate for seeds,

the efficiency factor is η = 1,
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The fluid model for this system is:
x′a = λa − θaxa − ua,
x′b = λb − θbxb − ub,
y′ = ua + ub − γy,

(1.2)

where

ua = min
(
cxa, µ(x+ y)

xa
x

)
,

ub = min
(
cxb, µ(x+ y)

xb
x

)
,

x = xa + xb.

From this equation there are also two different zones, divided by the plane
y = (c/µ− 1)(xa + xb), in the xa, xb, y space, again due to the restriction in
uploading or downloading capacities.

The authors propose a strategy to improve the performance by giving
priority to peers that will probably stay more time in the system, specially in
bad resource conditions. In order to define the policy, the space is divided by
planes in three zones, according to the capacity. For each zone a server policy
is defined, giving priority to high tolerance leechers when capacity becomes
too low. A fluid model considering the different policies in each zone is
stated. The analysis of the priority policy, compared with the non priority
one, is obtained by computing the fixed points. The priorities policies for
low tolerance and high tolerance leechers are adapted and exploited also for
streaming P2P applications in [ERAR13, RARTM13].

1.1.4 More BitTorrent models

In this work we consider stochastic and fluid models that allow to analyze
the number of peers in the system.

Another approach to study BitTorrent systems is to consider the number
and type of chunks that each peer possesses as for instance in [MV05]. The
authors study what they call a coupon replication system, that models a
file sharing BitTorrent-like mechanism. Their model considers many users,
each one aiming to complete a collection of coupons. At each time two users
meet and obtain one missing coupon from the other by replication, if they
do not have the same coupons. The model is motivated by the BitTorrent
mechanism, where each chunk is a coupon. Results from [EK86] are used
to prove the approximation by an asymptotic deterministic model for the
number of coupons that each user holds, when the number of coupons goes
to infinity. A closed form formula is obtained only in some particular cases.
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There are also papers considering epidemiological models of BitTorrent-
like systems as [KKS07, KKS09], where fluid limits and asymptotic distri-
butions are obtained. The number of chunks is a crucial parameter for the
model, as transition depends on this quantity. The authors analyze closed
and open systems and also the presence of incentives. Incentives are based
on splitting the file into more chunks, with the aim that pairs remain ac-
tive in the system. Although diffusion approximation is mentioned, it is not
considered further on the analysis.

Another way of managing the file sharing mechanisms is to consider
a fluid model with a PDE that takes into account the residual download-
ing times. Such models are developed in [FKP11, FP12, PF12], where the
authors combine the fluid limit approach via PDEs with queuing models.
Stability of such systems is analyzed, using control theory tools.

A different approach appears in [BMNV13], that considers fluid limits
combined with stochastic geometry taking into account the network topol-
ogy. With these tools the authors prove scalability of P2P networks and
obtain closed formulas for different performance metrics.

1.2 A stochastic model for BitTorrent

In this section we introduce a stochastic model that describes the number
of leechers and seeds in a BitTorrent-like system. From this microscopic
description we construct a sequence of processes that converges to a deter-
ministic limit, governed by the ODE stated by Qiu and Srikant in [QS04].
We also formulate a stochastic model for the number of low tolerance leech-
ers, high tolerance leechers and seeds, for the system studied by Rivero and
Rubino in [RAR10] and the corresponding sequence of processes that con-
verges to the ODE presented in their work. The case with a single type of
leechers is a particular case of this one. Last, we present a sequence of pro-
cesses as the scaled version of the model by Yang and de Veciana [YdV04]
and obtain its fluid limit.

1.2.1 One class of leechers

We consider a sequence, indexed by N that is the scaling factor for the
limit results, of two-dimensional continuous time Markov chains where the
components are the number of leechers and the number of seeds. We describe
the model’s dynamics as follows.

X̃N (t): number of leechers at time t,
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Ỹ N (t): number of seeds at time t. We also assume that there is an addi-
tional fixed seed (the total number of seeds is thus Ỹ N (t) + 1), so that
the system never dies,

Nλ: arrival rate for peers (leechers),

µ: uploading rate for each peer,

c: downloading rate for each peer,

θ: abandonment rate for a leecher before completing its download,

γ: leaving rate for seeds,

η ∈ [0, 1]: efficiency factor,

a leecher becomes a seed with rate

min
(
cX̃N (t), µ

(
ηX̃N (t) + Ỹ N (t) + 1

))
.

The inclusion of a fixed seed simplifies the model in the sense that the
system never dies, and we do not have to consider the extinction of seeds for
the stochastic model. In addition, in the following sections we prove that
this hypothesis does not affect the limit of the sequence, if there is not a
fixed seed the asymptotic behavior is the same. The introduction of the fixed
seed, or a number of fixed seeds that does not scale with N , only changes
some technicalities of the proofs concerning the asymptotic behavior. This
model corresponds to a stochastic description associated with the model
in [QS04]. We prove in the following section that the ODE in [QS04] is the
fluid limit of this sequence of processes as N goes to infinity.

1.2.2 Two classes of leechers

For two classes of leechers we consider a sequence of three-dimensional con-
tinuous time Markov chains where the components are the number of low
tolerance leechers, the number of high tolerance leechers, and the number
of seeds. The notation in this case is the following.

X̃N
a (t): number of leechers of type a at time t,

X̃N
b (t): number of leechers of type b at time t,

Ỹ N (t): number of seeds at time t. We also assume that there is an addi-
tional fixed seed (the total number of seeds is thus Ỹ N (t) + 1), so that
the system never dies,
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Nλa, Nλb: arrival rates for peers (leechers) of type a and b respectively,

µ: uploading rate for each peer,

c: downloading rate for each peer,

θa, θb: abandonment rates for a leecher before completing its download,
for type a and b respectively, with θb > θa (leechers of type a are high
tolerance peers and leechers of type b are low tolerance ones),

γ: leaving rate for seeds,

η ∈ [0, 1]: efficiency factor,

a leecher of type a becomes a seed with rate

min

(
cX̃N

a (t), µηX̃N
a (t) + µ

(
Ỹ N (t) + 1

) X̃N
a (t)

X̃N (t)

)
,

and a leecher of type b becomes a seed with rate

min

(
cX̃N

b (t), µηX̃N
b (t) + µ

(
Ỹ N (t) + 1

) X̃N
b (t)

X̃N (t)

)
.

The last transition rates model the system in the following way. The total
uploading capacity is µ(ηX̃N (t) + Ỹ N (t) + 1) and this capacity is shared
proportionally for high and low tolerance leechers, so for each class the

capacity is multiplied by its proportion, respectively X̃N
a (t)

X̃N (t)
and

X̃N
b (t)

X̃N (t)
.

This model corresponds to the proposal in [RAR10] and the ODE in
[RAR10] is the fluid limit of this sequence of processes as N goes to infinity.
Let us note that the efficiency factor η may be taken to be equal to 1 as
in [RAR10].

The model with a single class of leechers is a particular case of the
previous one, considering λa = λb = λ, θa = θb = θ, X̃N

a + X̃N
b = X̃N and

for one class of leechers we have a stochastic description associated with the
fluid model proposed by Qiu and Srikant in [QS04].

1.2.3 Revisiting the Markov chain model

We want to compare the models proposed by Yang and de Veciana [YdV04]
and by Qiu and Srikant [QS04], between them and with our model. For
this purpose, we propose a natural scaling for the model of Yang and de
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Figure 1.1: Transitions for P2P models. Left: transitions for the case of
only one type of leechers (Subsection 1.2.1). Right: transitions for the model
without abandons and without downloading capacity restriction (Subsection
1.2.3). In both pictures we do not consider the presence of the fixed seed,
as it is negligible for large N .

Veciana, that consists in considering (X̃N (t), Ỹ N (t)) the number of leechers
and seeds at time t, with the following transitions:

a leecher arrives with rate Nλ,

a leecher becomes seed with rate µ
(
ηX̃N (t) + Ỹ N (t) + 1

)
,

a seed leaves the system with rate γỸ N (t).

Later we analyze this model, that is very close to the one described in
Subsection 1.2.1 with a single class of leechers, when c is large, but has
discontinuous rates that change the characteristics of the limit.

1.3 Numerical examples

In this section we want to illustrate the models under consideration. Our ob-
jective of study is the scaled number of peers, we consider

(
XN (t), Y N (t)

)
=

1
N

(
X̃N (t), Ỹ N (t)

)
, the scaled number of leechers and seeds, when there is

a single class of leechers.
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In Figure 1.2 we work with the model described in Subsection 1.2.1 with
a single type of leechers, and we show the evolution (a trajectory) of the
scaled number of leechers and seeds

(
XN (t), Y N (t)

)
, for the parameter set

in Table 1.1, with
(
XN (0), Y N (0)

)
= (0, 0).
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Figure 1.2: One class of leechers with downloading constraint. Evolution
with time of the scaled number of leechers and seeds. (Model description in
Subsection 1.2.1 and parameters in Table 1.1). The line divides the plane
into two zones with different behaviors, considering constraints in uploading
or in downloading (as in this example) capacity.

N λ µ c γ θ η

100 1 3 5 2 0.01 0.5

Table 1.1: One class of leechers with downloading constraint. Parameters
for Figure 1.2.

Let us compare our model derived from the paper by Qiu and Srikant
in the case of a single type of leechers with the BitTorrent Markov model
of Yang and de Veciana and its scaled version described in Subsection 1.2.3.
In [YdV04] the authors do not take into account the restriction in upload-
ing or downloading capacity (their restriction only considers the uploading
capacity) and the fact that peers may abandon the system before finishing
their download. In our model (Subsection1.2.1) transition rates are contin-
uous, whereas in [YdV04] (and its scaled version in Subsection 1.1.1) there
are discontinuities when the number of leechers become zero. We will see
later that this introduces difficulties when considering the fluid limit.

To get some intuition on both models we compare them, using similar
parameters’ values. We expect that without abandons and for very large
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values of the downloading capacity, with the other parameters equal, both
models have similar behaviors, as in this case the restriction for model in
Subsection 1.2.1 is always in the uploading capacity, as for the model in
Subsection 1.2.3 that does not consider other capacity restrictions.

In Figure 1.3 and Figure 1.4, we show in each row, for large N , at the
left: evolution with time of proportion of leechers and seeds, and at the
right: relationship between proportion of leechers and seeds as time evolves.
We notice that in the four cases we identify regions where such trajectories
remains for large values of t.

In Figure 1.3, first row, we show a trajectory with one single type of
leechers for the model in Subsection 1.2.1, for very large values of the down-
loading capacity (restriction is in uploading capacity). In the second row
we consider the model of Subsection 1.2.3. The parameter set is given in
Table 1.2. There is a high coincidence for the model with switching capacity
constraints for large values of c and the model with only uploading capacity
constraints when there are many leechers and few seeds.

In the first row of Figure 1.4, we show a trajectory with one single type
of leechers for the model in Subsection 1.2.1, for very large values of the
downloading capacity (restriction is in uploading capacity). In the second
row we consider the model of Subsection 1.2.3. The parameter set is given
in Table 1.3. However, in both rows the behavior of the system is quite
different, as in the second row, for large values of time, the system remains
over the y axis.

When there are few leechers and many seeds the behavior seems different,
as in first and second rows in Figure 1.4. The number of leechers remains
more time at zero for the case in the second row, and this situation is avoided
in the case of the first row because the switching in transition rates forces
the system to remain below the line that divides the plane into two zones.
Because of this, trajectories in the first row cannot stay so long in the y
axis, as it occurs in the example appearing in the second row.

N λ µ c γ θ η

Model 1.2.1 100 1 3 100 10 0 1

Model 1.2.3 100 1 3 – 10 – 1

Table 1.2: Comparison between models with and without constraints with
many leechers. Numerical values of the parameters for Figure 1.3.
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N λ µ c γ θ η

Model 1.2.1 100 1 3 100 3.15 0 1

Model 1.2.3 100 1 3 – 3.15 – 1

Table 1.3: Comparison between Markov chains with and without constraints
with few leechers. Numerical values of the parameters for Figure 1.4.
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Figure 1.3: Comparison between Markov chains with and without con-
straints with many leechers and few seeds. Evolution of the scaled number
of leechers and seeds. First row: model in Subsection 1.2.1; last row: model
in Subsection 1.2.3. Parameters are in Table 1.2).

1.4 Fluid limits

In this section we present the results about fluid limits for the BitTorrent
model.

We consider the model described in Subsection 1.2.1, in the the case
of one class of leechers. For this model we find a fluid limit governed by
the ODE stated in [QS04], where convergence is almost sure in [0, T ], using
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Figure 1.4: Comparison between Markov chains with and without con-
straints with few leechers and many seeds. Evolution of the scaled number
of leechers and seeds. First row: model in Subsection 1.2.1; last row: model
in Subsection 1.2.3. Parameters are in Table 1.3).

Kurtz’s Theorem. Then we prove that there exists a stationary distribu-
tion for each N , by means of a Lyapunov function, and the convergence in
probability for the processes under the stationary distribution to the ODE’s
fixed point. We recall here results about the behavior of the ODE, that is
fully analyzed in [QS04, QS08]. These results can be obtained by different
methods, and later in this work we will use other techniques in order to
prove similar results in other contexts.

Results and proofs in the case of low and high tolerance leechers are
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straightforward from these ones. In the case with one class of leechers the
notation is simpler and it is also more suitable to show numerical results.

We also describe the fluid limit for the sequence of processes presented in
Subsection 1.1.1 following the model by Yang and de Veciana. In this case
the proof is different from the results described above, due to discontinuities
in the transition rates, that lead to non-differentiable fluid limits. This
topic will be addressed further in this work, with different approaches. In
this section we consider for this and all the other issues addressed the same
approach that we presented in [AMR11].

1.4.1 Convergence for finite time

Theorem 1.1. Let
(
X̃N (t), Ỹ N (t)

)
as in Subsection 1.2.1 Consider

(
XN (t), Y N (t)

)
=

1

N

(
X̃N (t), Ỹ N (t)

)
and (x, y) the solution to equation (1.1) with initial condition (x(0), y(0)).
If

lim
N→∞

(XN (0), Y N (0)) = (x(0), y(0))

then, for all T > 0,

lim
N→∞

sup
t∈[0,T ]

∣∣(XN (t), Y N (t)
)
− (x(t), y(t))

∣∣ = 0 a.s.,

where a.s. means almost sure convergence.

Proof. The result follows directly from Kurtz’s Theorem (Theorem 2.1, p.
456) in [EK86] (recalled in Appendix A), so we need to show that the hy-
potheses of Kurtz’s Theorem are verified, and for this purpose we look at
transitions rates.

The possible transitions in the N -th model
(
X̃N , Ỹ N

)
, starting from

state
(
X̃N (t), Ỹ N (t)

)
are the following:

a leecher arrives with rate Nλ,

a leecher becomes seed with rate

N min

(
cXN (t), µ

(
ηXN (t) + Y N (t) +

1

N

))
,

a leecher aborts before downloading with rate NθXN (t),
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a seed leaves the system with rate NγY N (t).

So, (X̃N (t), Ỹ N (t)) is a jump Markov process with transition rates of the
form

N

[
β`
(
XN (t), Y N (t)

)
+O

(
1

N

)]
for ` ∈ Z2 (` represents a possible transition). As in all the transitions β` is
bounded and Lipschitz on compact subsets, the result follows directly from
Kurtz’s Theorem.

The previous theorem is illustrated in Figure 1.5. We can see from the
picture that, for large time values, the number of leechers is around the
ODE’s fixed point. We analyze this in Theorem 1.5.
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Figure 1.5: Markov chain for one class of leechers with downloading con-
straint and ODE. In the left we show the simulation of one trajectory of
the scaled Markov chain (number of leechers and seeds) for large N and
the trajectory of the ODE. In the right we show for the same simulation the
evolution on the plane of the Markov chain and the ODE.(Model description
in Subsection 1.2.1 and parameters in first row of Table 1.1.)

Remark 1.2. A result in the sense of Theorem 1.1 is also valid for the
stochastic model associated with the system in [RAR10], as it verifies the
same hypotheses and it is also valid for the priority scheme proposed in the
same paper. The Markov chain that represents the priority scheme is of the
same type as the previous ones, so the fluid approximation also holds.
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Remark 1.3. Now we analyze the model presented in Subsection 1.2.3,
as it is intrinsically different and it is not under the hypotheses of Kurtz’ s
Theorem. As before, let (X̃N (t), Ỹ N (t)) be the number of leechers and seeds
at time t and (XN (t), Y N (t)) = 1

N (X̃N (t), Ỹ N (t)). Consider the following
transitions:

a leecher arrives with rate Nλ,

a leecher becomes seed with rate Nµ
(
XN (t) + Y N (t) + 1

N

)
,

a seed leaves the system with rate NγY N (t).

The convergence stated in Theorem 1.1 relies on the fact that transition rates
from state (X̃N (t), Ỹ N (t)) are of the form N

[
β`
(
XN (t), Y N (t)

)
+O

(
1
N

)]
,

with β a Lipschitz function. This assumption does not hold for the model in
[YdV04], as transition rates are discontinuous in the boundary x = 0. This
corresponds to a class of jump Markov processes studied in [SW95], called
flat boundary processes, and in what follows we consider this framework.
There are many different approaches for this kind of processes; later on this
work, we will consider other ways of dealing with discontinuous transition
rates following [Bor11a, GG12, JS14, Bor16].

From [SW95] (Chap. 8), in this case there is an analogous of Kurtz’s The-
orem, and the ODE that approximates the scaled process (XN (t), Y N (t)) is
the following: if x > 0 or λ− µ(ηx+ y) ≥ 0,{

x′ = λ− µ(ηx+ y),
y′ = µ(ηx+ y)− γy,

and if x = 0 and y > λ
µ ,{

x′ = π0λ+ (1− π0)(λ− µ(ηx+ y)),
y′ = −π0γy + (1− π0)(µ(ηx+ y)− γy),

with

π0 =

 1− λ

µy
if y > λ

µ ,

0 if y ≤ λ
µ .

π0 is obtained in [SW95] as the stationary distribution in the border, that is,
when the system is under its stationary distribution considering two states,
remaining at the border (probability π0) and at the interior (probability
1− π0).
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Another interpretation is given by [Bor11a, Bor16], and will be addressed
in more detail in this dissertation, but now we introduce it as a second
explanation. We have two vector fields, given by (λ−µ(ηx+y), µ(ηx+y)−γy)
that corresponds to the equation inside the first quadrant and (λ, γy) that
corresponds to the equation in the border. When (λ−µ(ηx+y), µ(ηx+y)−
γy) in the border points outside the first quadrant (which occurs when y >
λ
µ), as (λ, γy) points towards the first quadrant, the deterministic solution
will stay at the border and should verify a equation given by a convex
combination of the two vector fields.

Then we have the following equation describing the limit: if x > 0 or
y < λ

µ , then {
x′ = λ− µ(ηx+ y),
y′ = µ(ηx+ y)− γy,

and if x = 0 and y ≥ λ
µ , then{

x′ = 0,
y′ = λ− γy, .

The above equations show that it is possible to obtain fluid limits for this
kind of models, despite discontinuities in transition rates. Convergence is
illustrated in Figure 1.6. For the set the parameters chosen, trajectories stay
some time in the axis, that is a typical behavior of PWSDS obtained as a
solution of an ODE with discontinuous right hand side, and it is called in the
literature sliding motion (see [Bor11a, GG12, JS14, Bor16] and references
therein).

1.4.2 Convergence for stationary regime

Now we turn our attention to the ergodicity of (X̃N (t), Ỹ N (t)). It seems
not simple to find the stationary distribution explicitly. Classical sufficient
conditions as reversibility are not verified, so we don’t know if there is local
balance. We prove ergodicity by using a Lyapunov function. The ergodicity
result is also stated in [RAR10], as there is a Markov model that is compared
with the fluid one by simulations, using queuing arguments that allow to
reduce the analysis of the existence of a stationary regime to the study of a
Jackson network.

Proposition 1.4. The process (X̃N (t), Ỹ N (t)) is ergodic for each N .
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Figure 1.6: Markov chain for one class of leechers without constraints and
ODE. In the left we show the simulation of one trajectory of the scaled
Markov chain (number of leechers and seeds) for large N and the trajectory
of the ODE. In the right we show for the same simulation the evolution on
the plane of the Markov chain and the ODE.(Model description in Subsec-
tion 1.2.3 and parameters in second row of Table 1.3.)

Proof. The proof is based on [Rob03] (Proposition 8.14, p. 225), consid-
ering Lyapunov functions. f(x, y) = x + y is a Lyapunov function for
(X̃N (t), Ỹ N (t)). We must verify that there exist K and h such that the
following conditions hold:

1. for f(x, y) > K, Q(f)(x, y) ≤ −h, with

Q(f)(x, y) =
∑

l∈Z2,l 6=0

q ((x, y), (x, y) + l) [f((x, y) + l)− f(x, y)]

(q ((x, y), (x, y) + l) is the transition rate from (x, y) to (x, y) + l);

2. the random variables

sup{f(X̃N (s), Ỹ N (s)) : s ≤ 1},∫ 1

0
|Q(f)(X̃N (s), Ỹ N (s))| ds

are integrable;

3. F = {(x, y) : f(x, y) ≤ K} is finite.
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These assumptions imply that the process is ergodic. Let us verify them:

1. Q(f)(x, y) = λN − θx − γy ≤ −h for x + y > K; it suffices then to
take K ≥ (λN + h)/min(θ, γ).

2. The Poisson process Z(s) with rate Nλ is an upper bound of the func-
tion f(X̃N (s), Ỹ N (s)) = X̃N (s) + Ỹ N (s), and it is integrable on each
bounded interval. Analogously λN+max(θ, γ)Z(s) is an upper bound
of |Q(f)(X̃N (s), Ỹ N (s))|; the integral of the former is thus bounded
by λN + max(θ, γ)

∫ 1
0 Z(s) ds and it is then integrable.

3. Immediate.

From the previous assumptions (X̃N (t), Ỹ N (t)) is ergodic for each N .

The same result holds for the stochastic model considering two classes of
leechers described above. In that case a Lyapunov function is f(xa, xb, y) =
xa + xb + y. The assumptions are verified as above. It follows from noticing
again that the only possible transition away from a region {(xa, xb, y) :
xa + xb + y ≤ K} is when a new peer arrives. As arrivals follow Poisson
processes, the hypotheses about finite expectation hold.

In what follows we prove the convergence of the stationary regime to the
ODE’s fixed point. As the process (XN (t), Y N (t)) converges in bounded
intervals and has a stationary distribution, one can expect that the station-
ary distribution converges to the ODE’s fixed point. This result is used for
the analysis in [QS04], and in different contexts in other works (see for ex-
ample [MV05]), sometimes without a detailed proof. In [QS04] it is proven
that the ODE has an unique fixed point

(x∗, y∗) =

 λ

β
(

1 + θ
β

) , λ

γ
(

1 + θ
β

)
 ,

with
1

β
= max

{
1

c
,

1

µ
− 1

γ

}
.

and that the system is locally stable. The work from Qiu and Sang [QS08]
is devoted to the analysis of equation (1.1), and they prove that the unique
fixed point is a global attractor. We show in Figure 1.7 the vector field
associated with equation (1.1).
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Figure 1.7: Vector fields and fixed points for equation (1.1) for different
parameters sets. The parameters’ values are in Table 1.4.)

λ µ c γ θ η

1 3 5 2 0.01 0.5

1 3 10 2 0.01 0.5

Table 1.4: Parameters for vector fields for equation (1.1) in Figure 1.7.

Theorem 1.5. Let
(
XN (∞), Y N (∞)

)
be the scaled number of leechers and

seeds in stationary regime. Let (x∗, y∗) be the fixed point of (1.1). Then

lim
N→∞

(
XN (∞), Y N (∞)

)
= (x∗, y∗)

in probability.

Proof. Let µN (t) be the distribution of
(
XN (t), Y N (t)

)
and let πN (∞) be

the stationary distribution of the process (we know from Proposition 1.4
that there exists a unique stationary distribution for each N). We will use
for our proof Theorem 6.89, p. 165 in [SW95]. This theorem assures that
under a set of hypotheses that will be verified, if (x∗, y∗) is a global attractor
then

lim
N→∞

∫
Bε(q)

dπN (∞) = 1,

with (x∗, y∗) = q and Bε(q) =
{
y ∈ R2 : |y − q| < ε

}
, which implies that

lim
N→∞

(
XN (∞), Y N (∞)

)
= (x∗, y∗)
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in probability. To apply the result we must verify that:

1. the jumps of the Markov process take integer values in each direction,

2. the rates β` are uniformly Lipschitz continuous in a neighborhood of
(x∗, y∗),

3. the process is positive recurrent,

4. if τε(N) = inf
{
t :
∣∣(XN (t), Y N (t)

)
− (x∗, y∗)

∣∣ < ε
}

, then for each K,
ε and for all N , there exists a constant Cε,M such that

sup
|p−q|≤M

Ep [τε(N)] ≤ Cε,M <∞,

with p = (x(0), y(0)) and Ep the expected value starting from p.

The first three assumptions are immediately verified (the third one arises
from Proposition 1.4). So, we focus on the fourth one. Also from [SW95]
(Lemma 6.32 p. 143) the distribution of τε(N) has geometric tails for large
N , that is, there is a T (ε) <∞ and a constant C0(ε) such that

Pp(τε(N) > kT ) ≤ e−NC0(ε)k.

This implies the bound for Ep [τε(N)] and thus completes the proof.

The convergence for the stationary distribution to the ODE’s fixed points
is a widely discussed topic. The authors of [BLB08] prove this convergence
in the case of the occupation measure of a system with N individuals and
a finite state space. Our problem differs from that situation because of the
compactness of the state space. However, our proof and the proof in [BLB08]
rely in large deviations results. The proof in [BLB08] is based on [Ben99],
where a very general result (considering the case with multiple invariant
distributions and a much more complex asymptotic behavior for the ODE)
is proven using large deviations arguments together with dynamical systems
ones. In [BLB08] it is also discussed why the existence of a unique fixed
point does not guarantee the convergence of a sequence of invariant dis-
tributions. It shows examples where there is only one fixed point but the
support of accumulation points of invariant distributions lies on a subset
that is a limit cycle for the ODE. In order to avoid the problem of proving
asymptotic stability, [LB10b] presents a very general result of convergence
for the stationary distribution when there is a unique fixed point in case
of reversible processes, a strong assumption that is not valid in our model.
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The convergence for the stationary distribution of the occupation measure
is also discussed in [BMP08], in a more general framework (denumerable
state spaces). The proof there is strongly related with the mean field decou-
pling assumption (the asymptotic independence and the convergence of the
stationary distributions are proved together).

For the model in [RAR10] we do not have a proof of global stability
of ODE’s fixed point, so we cannot yet extend the previous theorem for
that case. It is only observed in simulations in [RAR10] that the stationary
regime converges to the fixed point of the associated ODEs, both in the
priority and non priority schemes.

1.5 Asymptotic distribution

As the natural relation between the Law of Large Numbers and the Central
Limit Theorem, once we have stated a fluid limit our aim is to find the
velocity of that convergence. Thus we study the asymptotic distribution of
the difference between the stochastic process and its fluid limit. We want to
find a suitable scale for that difference in order to have a limit law. First,
for a scaling as

√
N , we derive a Gaussian approximation for the transient

regime in compact time intervals. Then we extend this approximation for
the whole real line and we obtain the asymptotic distribution in stationary
regime. This approximation describes in a precise way the system behavior
for large values of N , simultaneously for all t, providing confidence inter-
vals for the number of leechers and seeds. We use ⇒N for convergence in
distribution with N → +∞.

1.5.1 Gaussian approximation for finite time

Theorem 1.6. Consider
(
XN , Y N

)
as in Section 1.2 and let (x, y) be the

solution to equation (1.1) with initial condition (x(0), y(0)). Let

V N =
√
N [(XN , Y N )− (x, y)].

If

lim
N→∞

√
N
[
(XN (0), Y N (0))− (x(0), y(0))

]
= lim

N→∞
V N (0) = V (0)

in probability, with V (0) deterministic, then,

√
N
[(
XN , Y N

)
− (x, y)

]
= V N ⇒N V,
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where V is a Gaussian process with covariance matrix given by

Cov (V (t), V (r)) =

∫ t∧r

0
eM(t)(t−s)G(x(s), y(s))eM(r)T (r−s) ds, (1.3)

where

G(x(t), y(t)) =

(
λ+ θx(t) + r(x(t), y(t)) −r(x(t), y(t))

−r(x(t), y(t)) γy(t) + r(x(t), y(t))

)
,

M(t) =

(
−(µη + θ) −µ

µη µ− γ

)
if cx(t) ≥ µ(ηx(t) + y(t)),

M(t) =

(
−(c+ θ) 0

c −γ

)
if cx(t) < µ(ηx(t) + y(t)),

r(x(t), y(t)) = min{cx(t), µ(ηx(t) + y(t))}

and M(t)T denotes the transpose of M(t).

Proof. The result follows as a consequence of Kurtz’s Theorem (Theorem
2.3, p.458, in [EK86]. We use the explicit form of the covariance ma-
trix presented there. The proof of that theorem relies on a representation
of V N (t) and V (t) by an integral involving the differential dF (x(t), y(t)),
where F is the function defining the fluid limit, so the original theorem
assumes that the transition rates evaluated at the fluid limit are C1 func-
tions. This assumption is not valid in our case, but there is only one t
where the rate min{cx(t), µ(ηx(t) +y(t))} is not differentiable (that is when
cx(t) = µ(ηx(t) + y(t))). As this happens at only one point, it does not
affect the integral representation. The justification that there is only one t
for which cx(t) = µ(ηx(t)+y(t)) follows from the fact that the fixed point is
a global attractor, so the trajectories (x(t), y(t)) hit {(x, y) : cx = µ(ηx+y)}
only a finite number of times.

In Figure 1.7 it can be seen that there is at most one hitting point in
our case.

In Figures 1.8 and 1.9 we show, for different values of N , histograms
and Q-Q plots of 100 independent samples of the scaled number of leechers√
N
(
XN (t)− x(t)

)
and seeds

√
N
(
Y N (t)− y(t)

)
for a fixed t and in Figure

1.10 we show the 95% confidence interval for the scaled number of leechers.
[QS04] describes without a detailed proof the variability around the fluid

limit (the solution to equation (1.1)). For a large arrival rate λ, the number
of leechers and seeds are approximately x(t)+

√
λx̂(t) and y(t)+

√
λŷ(t), with

x̂(t) and ŷ(t) Gaussian processes (Ornstein-Uhlenbeck). In our framework

42



−2 0 2
0

0.1

0.2

0.3

0.4

Leechers (N=10)

−2 0 2
0

0.1

0.2

0.3

0.4

Seeds (N=10)

−2 0 2
0

0.1

0.2

0.3

0.4

Leechers (N=50)

−2 0 2
0

0.1

0.2

0.3

0.4

Seeds (N=50)

−2 0 2
0

0.1

0.2

0.3

0.4

Leechers (N=100)

−2 0 2
0

0.1

0.2

0.3

0.4

Seeds (N=100)

−2 0 2
0

0.1

0.2

0.3

0.4

Leechers (N=500)

−2 0 2
0

0.1

0.2

0.3

0.4

Seeds (N=500)

Figure 1.8: Histograms of 100 independent samples of
√
N
(
XN (1)− x(1)

)
and
√
N
(
Y N (1)− y(1)

)
for different values of N .

we have that the arrival rate is Nλ and the number of leechers and seeds are
characterized by X̃N (t) ≈ Nx(t)+

√
NV1(t) and Ỹ N (t) ≈ Ny(t)+

√
NV2(t),

with V = (V1, V2) the Gaussian process described in Theorem 1.6. We
observe that the limit process V (t) verifies a stochastic differential equation
(see equation (2.18), p. 458 in [EK86]). The Gaussian process stated in
[QS04] can be obtained from this stochastic differential equation by replacing
x(t) and y(t) by its respective limits x∗ and y∗, provided that the processes
remains always in the same half-plane as the fixed point.

1.5.2 Gaussian approximation for stationary regime

We prove that the limit process V (t) converges in distribution, when t goes
to infinity V (∞) defined as a Gaussian variable with covariance matrix

Σ = lim
t→+∞

Cov (V (t), V (t)) ,
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Figure 1.9: Normal Q-Q plots, obtained from 100 simulated independent
samples of

√
N
(
XN (1)− x(1)

)
and
√
N
(
Y N (1)− y(1)

)
for different values

of N .

defined by Equation (1.3). AS future work we want to analyze the distribu-
tion in stationary regime for

V N =
√
N
[(
XN , Y N

)
− (x, y)

]
, where the goal is to extend the convergence stated in Theorem 1.6, when
time goes to infinity.

Proposition 1.7. Let Σ(t) = Cov (V (t), V (t)) defined by Equation (1.3).
The limit when t → ∞ of matrix Σ(t) is the covariance matrix Σ solution
of the equation

MΣ + ΣMT +G = 0,

where
M = lim

t→∞
M(t),
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Figure 1.10: ODE trajectory, confidence interval for each t and one trajec-
tory for the scaled number of leechers XN (t). The variance is computed for
each t from 100 independent replications of the experiment (parameters in
Table 1.1).

G = lim
t→∞

G(x(t), y(t)),

with M(t) and G(x(t), y(t)) defined in Theorem 1.6.
We can write explicitly G and M in terms of the fixed point (x∗, y∗) of

the ODE stated in Equation 1.1.

G =

(
λ+ θx∗ + r(x∗, y∗) −r(x∗, y∗)

−r(x∗, y∗) γy∗ + r(x∗, y∗)

)
,

M =

(
−µη − θ −µ
µη µ− γ

)
if

1

c
≥ 1

µ
− 1

γ
,

M =

(
−c− θ 0
c −γ

)
if

1

c
<

1

µ
− 1

γ
,

r(x∗, y∗) = min{cx∗, µ(ηx∗ + y∗)}.

Proof. We consider Cov (V (t), V (t)) defined by equation (1.3)

Σ(t) =

∫ t

0
eM(t)(t−s)G(x(s), y(s))eM(t)T (t−s) ds

= eM(t)t

(∫ t

0
e−M(t)sG(x(s), y(s))e−M(t)T s ds

)
eM(t)T t.
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We want to compute its derivative in each region of the plane divided by the
line y = (c/µ− η)x, that is assuming that (x(t), y(t)) is always in the same
region and matrix M(t) remains constant. This happens according with a
time tS that is the crossing time between regions for the solution (x(t), y(t))
or when (x(t), y(t)) has an initial condition that allows the solution to remain
in the same region. As the fixed point is a global attractor, the previous
assumption can be verified by considering an initial condition close enough
to the fixed point. We consider M(t) = M , as dependence of time for M(t)
is only due to the region where the solution (x(t), y(t)) stays, and when it
does not switch between regions the matrix M(t) is a constant matrix. In
addition we are interested only in the region that contains the fixed point.
Then taking M(t) = M and taking derivatives, we have

Σ′(t) =

[
eMt

(∫ t

0
e−MsG(x(s), y(s))eM

T s ds

)
eM

T t

]′
= MeMt

(∫ t

0
e−MsG(x(s), y(s))e−M

T s ds

)
eM

T t

+eMte−MtG(x(t), y(t))e−M
T teM

T t

+eMt

(∫ t

0
e−MsG(x(s), y(s))eM

T s ds

)
MT eM

T t

= MeMt

(∫ t

0
e−MsG(x(s), y(s))eM

T s ds

)
eM

T t

+G(x(t), y(t))

+eMt

(∫ t

0
e−MsG(x(s), y(s))eM

T s ds

)
MT eM

T t

= MΣ(t) +G(x(t), y(t)) + Σ(t)MT .

Matrix Σ(t) verifies the matrix ODE

Σ′(t) = MΣ(t) +G(x(t), y(t)) + Σ(t)MT ,

whose fixed point is obtained by solving the Lyapunov equation

MΣ +G+ ΣMT = 0, (1.4)

obtained from

lim
t→+∞

MΣ(t) +G(x(t), y(t)) + Σ(t)MT = 0.
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If the system x′ = Mx is globally asymptotically stable and G = GT , then
the Lyapunov Equation(1.4) has the unique solution [BEGFB94]

Σ =

∫ +∞

0
eMtGeM

T tdt. (1.5)

Theorem 1.8. For each t, V (t) defined in Theorem1.6 converges in dis-
tribution, when t → +∞ to a bivariate centered Gaussian variable with
covariance matrix Σ defined by Equations (1.4) and (1.5).

Proof. V (t) is a centered process. We consider for each t the characteristic
functions

ϕ(t) = Eeiλ
TV (t) = e−

1
2
λT Σ(t)λ.

We have that limt→+∞Σ(t) = Σ and then

lim
t→+∞

ϕ(t) = lim
t→+∞

Eeiλ
TV (t) = lim

t→+∞
e−

1
2
λT Σ(t)λ = e−

1
2
λT Σλ.

From this V (t)⇒ N(0,Σ) when t→ +∞.

1.6 Conclusions Peer to Peer

Analyzing different models for BitTorrent-like systems in the literature we
obtain that the deterministic fluid models presented in [QS04] and [RAR10]
are fluid limits of stochastic models. Considering different type of leechers
does not change the proof of the fluid limit, despite the ODE asymptotic
behavior obtained in that case is more difficult to analyze. However, we
prove there is a stationary regime for each process in the sequence and
that this process converges to the ODE’s fixed point. We find a Gaussian
approximation in stationary regime and also obtain the limit of this Gaussian
process when time goes to infinity. It is an issue for further work to prove
that the process in stationary regime converges to this limit, following the
lines sketched in [EK86], that derives results from [Nor77].

We also consider the fluid limit for the stochastic process presented in
[YdV04], that has a piecewise smooth dynamical system as limit. The limit
obtained shows sliding motion in the border of the state space, and the
asymptotic distribution in that case cannot be obtained straightforward from
classical results as Kurt’z theorem, so this is also a topic for future work.
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Chapter 2

Machine Repairman Model

2.1 MRM models

The Machine Repairman Model (MRM) is a basic Markovian queue repre-
senting a finite number N of machines that can fail independently and, then,
be repaired by a repair facility. The latter, in the basic model, is composed
of a single repairing server with a waiting room for failed machines managed
in FIFO (first in, first out) order, in case the repairing server is busy when
units fail. In Kendall’s notation, this is the M/M/1//N model, specifying
that lifetimes and repair times are exponentially distributed. This model
is well known and widely studied in queuing theory and in many applica-
tions, as for example in telecommunications or in reliability. Almost all these
studies look at the queue in equilibrium.

The model is a precursor of the development of queuing network theory,
motivated first in computer science. In particular, Scherr from IBM used
it in 1972 for analyzing the S360 operating system (see [Lav83]). Many ex-
tensions of the basic model have been studied, considering more than one
repairing server, different queuing disciplines, and other probability distri-
butions for the lifetime or for the repair time. We refer to [HA07] for further
reference on the problem.

Looking for fluid limits is a suitable approach to repairman problems, as
shown in [Kur82], where the MRM model with two repair facilities, studied
by Iglehart and Lemoine in [IL73, IL74], is analyzed using these tools. In
[IL73] there are N operating units subject to exponential failures with pa-
rameter λ. Failures are of type 1 (resp. 2) with probability p (resp. 1−p = q).
If failure is of type i (i = 1, 2) the unit goes to repair facility i that has siN
exponential servers, each one with exponential service rate µi. The goal is to

48



study the stationary distribution when sNi ∼ Nsi as N →∞, i = 1, 2. The
behavior of the system is characterized in terms of the parameter set that
defines the model. In addition, the case with spares is presented in [IL74].
The paper’s approach consists in approximating the number of units in each
repair facility by binomial random variables, and then proving for them a
law of large numbers and a Central Limit Theorem. Kurtz, in [Kur82] stud-
ies the same model with a fluid limit approach, proves convergence to a
deterministic system, and goes a step beyond, considering the rate of this
approximation through a central limit theorem-type result. The same dis-
cussion as in [IL73] in terms of the different parameter set follows from the
study of the ODE’s fixed point.

In this thesis we analyze a repairman problem with N working units that
break randomly and independently according to a phase-type distribution.
Broken units go to one repairman where the repair time also follows a phase-
type distribution (that is, a PH/PH/1//N model). We consider a scaled
system, dividing the number of broken units and the number of working
units in each phase by the total number of units N . The scaled process has
a deterministic limit when N goes to infinity. The first problem that the
model presents is that there are two time scales: the repairman changes its
phase at a rate of order N , whereas the total scaled number of working units
changes at a rate of order 1. Another problem is that transition rates are
discontinuous because of idle periods at the repairman (this second issue is
also present in simpler models as the M/M/1 and M/M/N/N).

In our main result we prove that the scaled Markovian multi-dimensional
process describing the system dynamics converges to the solution of an ODE
as N →∞. The convergence is in probability and takes place uniformly in
compact time intervals (denoted u.c.p. convergence), and the deterministic
limit, the solution to the ODE, is only picewise smooth. We analyze the
properties of this limit, and we prove the convergence in probability of the
system in stationary regime to the ODE’s fixed point. We also find that
this fixed point only depends on the repair time by its mean. As a matter
of fact recall that, when in equilibrium, if the repair times are exponen-
tially distributed, the distribution of the number of broken machines has
the insensitivity property with respect to the lifetime distribution (only the
latter’s mean appears in the former). Although this behavior may be ex-
pected because of the scaling, it is not straightforward. In addition, the
whole phase-type lifetime distribution takes part in the result. Different
lifetimes with the same mean give different behaviors, both in the transient
and in the stationary regime. We use phase-type distributions in both the
units’ lifetimes and in the repair facility, to be more general and to cover a
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larger number of situations.
As a general reference we refer again in this chapter to the monograph by

Ethier and Kurtz [EK86] and references therein. The main approach there
consists in a random change of time that allows to write the original Markov
chain as a sum of independent unit Poisson processes evaluated at random
times. Darling and Norris [DN08] present a survey about approximation of
Markov chains by differential equations with an approach based on martin-
gales. However, [DN08] does not deal with discontinuous transition rates.
We refer to the books by Shwartz and Weiss [SW95], and Robert [Rob03]
for extensive analysis of the M/M/1 and the M/M/∞ queues, including
deterministic limits, asymptotic distributions and large deviations results.
In particular, in [SW95] discontinuous transition rates and different time
scales are considered. The latter situation is also considered in [BKPR05]
and [AEJV13]. We mostly follow the approach of [Bor11a] to deal with
discontinuous transition rates, which considers hybrid limits for continu-
ous time Markov chains with discontinuous transition rates, with examples
in queuing and epidemic models. Discontinuous transition rates are also
studied in [BT12, HB12]. Paper [BT12] analyzes queuing networks with
batch services and batch arrivals, that lead to fluid limits represented by
ODEs with discontinuous right-hand sides. Paper [HB12] models optical
packet switches, where the queuing model lead to ODEs with discontinuous
right-hand sides, and where they consider both exponential and phase-type
distributions for packet lengths. Convergence to the fixed points is studied
in several works (e.g. [SW95, BT12, BLB08]). However there are coun-
terexamples where there is no convergence of invariant distributions to fixed
points [BLB08]. There are general results with quite strong hypotheses as
in [LB10b], where reversibility is assumed in order to prove convergence to
the fixed point.

2.2 Stochastic model

We consider N identical units that work independently, as part of some
system, that randomly fail and that get repaired. Broken units go to a re-
pairman with one server, where the repair time is a random variable with a
phase-type distribution. After being repaired units start working again. The
units’ lifetimes are independent identically distributed random variables also
with phase-type distribution. We want to describe the number of working
units in each phase before failure and the number of broken units in the
system. We consider the system for large N , with the repair time scaled
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by N . This means that the repair time per unit decreases as N increases.
We describe the limit behavior of the system when N goes to infinity. The
assumption of phase-type distributions allows to represent a wide variety
of systems, as phase-type distributions approximate well many positive dis-
tributions, allowing, at the same time, to exploit properties of exponential
distributions and Markov structure. Concerning the repairing facility, we
consider a single server with the service time also scaled according with the
number of units, and we find a different behavior than for the model scaled
both in the number of units and the number of servers.

A phase-type distribution with k phases is the distribution of the time
to absorption in a finite Markov chain with k + 1 states, where one state
is absorbing and the remaining k states are transient. With an appropri-
ate numbering of the states, the transient Markov chain has infinitesimal

generator M̂ =

(
M m

0 0

)
, where M is a k × k matrix, and m = −M1l,

with 1l the column vector of ones in IRk. The initial distribution for the
transient Markov chain is a column vector (r, 0) ∈ IRk+1, where r is the ini-
tial distribution among the transient states. We represent this phase-type
distribution by (k, r,M). We refer to [AA10] for further background about
phase-type distributions.

We describe the distributions and variables involved in the model. All
vectors are column vectors.

Repair time. The repair time follows a phase-type distribution (m, p,NA),
with m phases, matrix NA (where A is a fixed matrix and N is the
scaling factor) and initial distribution p. We denote

Na = N(a1, . . . , am) = −NA1l.

Lifetime. The lifetime for each unit is phase-type (n, q,B), with n phases,
matrix B and initial distribution q. We denote

b = (b1, . . . , bn) = −B1l.

Working units. X̃N
i (t) is the number of units working in phase i of their

lifetimes at time t, for i = 1, . . . , n, and

X̃N = (X̃N
1 , . . . , X̃

N
n ).

Repairman state. Z̃Ni (t) is number of units being repaired in phase i of

their repair times for i = 1, . . . ,m (Z̃Ni (t) is zero or one), and

Z̃N = (Z̃N1 , . . . , Z̃
N
m ).
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Waiting queue. Ỹ N (t) is the number of broken units waiting to be repaired.

Scaling. We consider the scaling:

XN =
1

N
Ỹ N , Y N =

1

N
Ỹ N , ZN =

1

N
Z̃N .

Note that 1lT Z̃N (t) + 1{1lT X̃N (t)=N} = 1, where 1P is the indicator function

of the predicate P. That means that units are all working, or there is one
unit being repaired at the server. In addition,

1lT X̃N (t) + Ỹ N (t) +

m∑
i=1

Z̃Ni (t) = N.

Let
ŨN =

(
X̃N

1 , . . . , X̃
N
n , Ỹ

N , Z̃N1 , . . . , Z̃
N
m

)
be a continuous time Markov chain.

We denote by ei ∈ IRn+m+1 the vector ei = (ei1, . . . , e
i
n+m+1) with eii = 1

and eij = 0 for i 6= j, i, j = 1, . . . , n+m+ 1. We call them direction vectors.
We describe the possible transitions for this Markov chain from a vector
ũ in the state space, with its corresponding transition rates. We identify
transitions from state ũ to state ṽ with the difference ṽ − ũ, written as
a difference of direction vectors. We consider the vector ũ = (x̃, ỹ, z̃) with
x̃ = (x̃1, . . . , x̃n), z̃ = (z̃1, . . . , z̃m), with x̃i ∈ {0, 1, . . . , N} for all i = 1, . . . n,
ỹi ∈ {0, 1, . . . , N} and z̃i ∈ {0, 1} for all i = 1, . . .m.

A working unit in phase i changes to phase j. For i, j = 1, . . . , n, transition
ej − ei (that is from state ũ = (x̃1, . . . , x̃i, . . . , x̃j , . . . , x̃n, ỹ, z̃) to state
ṽ = (x̃1, . . . , x̃i − 1, . . . , x̃j + 1, . . . , x̃n, ỹ, z̃)) occurs with rate bij x̃i.

A working unit in phase i breaks and goes to the buffer. The unit goes
to the buffer because there is one unit in service. For i = 1, . . . , n,
transition en+1 − ei occurs at rate bix̃i1{1lT x̃<N}.

A working unit in phase i breaks and starts being repaired. The unit
starts being repaired because the repairman is idle, at phase j. For
i = 1, . . . , n, j = 1, . . . ,m, transition en+1+j − ei occurs at rate
bipj x̃i1{1lT x̃=N}.

A unit that is being repaired in phase i changes to phase j. For i, j =
1, . . . ,m, transition en+1+j − en+1+i occurs at rate Naij z̃i.
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A unit that is being repaired in phase i ends its service and starts working
at phase j with the buffer empty. If the buffer is empty, nobody
starts being served and for j = 1, . . . , n, i = 1, . . . ,m, the transition
ej − en+1+i occurs at rate Naiqj z̃i1{ỹ=0}.

A unit that is being repaired in phase i ends its service and starts working
at phase j with nonempty buffer. If the buffer is nonempty a unit in
the buffer starts being served in phase k at the same time, then for j =
1, . . . , n and i, k = 1, . . . ,m, the transition ej +en+1+k−en+1−en+1+i

occurs at rate Naiqjpkz̃i1{ỹ>0}.

2.3 Fluid limit

In this section we compute the drift and analyze its limit, that defines a
deterministic system, in this case a piecewise smooth dynamical system.

2.3.1 Drift computation and description of its limit

In order to understand an summarize the dynamics of the stochastic process
we compute the drift for our model. We compute it and we analyze the
behavior of the ODE that will define the limit. We obtain an ODE with
discontinuous right-hand side.

Let us recall that for a Markov chain V ∈ IRd, with transition rates rv(x)
from x to x+ v, the drift is defined by β(x) =

∑
v vrv(x), where the sum is

in all possibles values of v. One possible representation of a Markov chain
is in terms of the drift, where in a general way

V (t) = V (0) +

∫ t

0
β(V (s))ds+M(t),

with M(t) a martingale. One approach to establish a fluid limit is to exploit
this decomposition for the scaled process, to prove that there is a deter-
ministic limit for the integral term and to prove that the martingale term
converges to 0.

We write down the drift β of the scaled process UN = ŨN/N , evalu-
ated at u = (x, y, z) with x = (x1, . . . , xn), z = (z1, . . . , zm), with x̃i ∈
{0, 1/N, . . . , 1} for i = 1, . . . n, ỹ ∈ {0, 1/N, . . . , 1} and z̃i ∈ {0, 1/N} for
i = 1, . . .m. Let β = (β1, . . . , βn+m+1). For i = 1, . . . , n we have the
following equations:

βi(u) =

n∑
j=1

bjixj + qi

m∑
j=1

ajNzj .
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Let us call βX the first n coordinates of the drift. In matrix notation:

βX(u) = BTx+ aTNzq.

For i = n+ 1 the drift equation (the (n+ 1)th coordinate of the drift) is:

βn+1(u) =

n∑
j=1

bjxj1{1lT x<1} −
m∑
i=1

aiNzi1{y>0}

and in matrix notation (we also call this coordinate βY ):

βY (u) = bTx1{1lT x<1} − a
TNz1{y>0}.

For k = n+ 1 + i, with i = 1, . . . ,m we have:

βk(u)=pi1{1lT x=1}

n∑
j=1

bjxj +
m∑
j=1

Nzj
(
aji + pi1{y>0}aj

)
.

In matrix notation (we call these coordinates of the drift βZ) we have:

βZ(u) = bTx1{1lT x=1}p+ATNz + aTNz1{y>0}p.

We denote β(u) = β(x, y, z). We have

βX(x, y, z) = BTx+ aTNzq, (2.1)

βY(x, y, z) = bTx1{1lT x<1} − a
TNz1{y>0}, (2.2)

βZ(x, y, z) = bTx1{1lT x=1}p+ATNz + aTNz1{y>0}p. (2.3)

These equations suggest the ODE that should verify the deterministic limits
(x, y) of (XN , Y N ), if they exist. However, the drift depends on the values
of Nz. The process Z̃N varies at a rate of order N whereas the processes
XN and Y N vary at a rate of order 1. So, we can assume that when N goes
to infinity and for a fixed time the process Z̃N has reached its stationary
regime and then the limit of the last m coordinates of the drift is negligible.
With this argument the candidate to the ODE defining the fluid limit is
obtained by replacing in equations (2.1) and (2.2) Nz by z̃, the solution to
the n-dimensional equation

bTx1{1lT x=1}p+AT z̃ + aT z̃1{y>0}p = 0.

Solving this last equation (multiplying by 1lT , by 1lT
(
AT
)−1

, and using

the relationship 1lT z̃ = 1{1lT x<1}) we have aT z̃ = µ1{1lT x<1}, with 1/µ =
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−1lT
(
AT
)−1

p, the mean time before absorption for the transient Markov
chain defining the phase-type repair time distribution. We refer to [AA10]
for properties of phase-type distributions. As we want to obtain an ODE
for x, the candidate to ODE’s vector field is F (x) = BTx+µ1{1lT x<1}q. We

observe that the equation x′ = BTx + µq is valid when 1lTx < 1, or, in the
border 1lTx = 1, when the vector field BTx + µq points towards the region
1lTx < 1, that is 1lT (BTx + µq) < 0. Using that B1l = −b the condition
is bTx > µ. When 1lTx = 1 and bTx ≤ µ the equation presents what is
called sliding motion. We follow the presentation of this topic in [Bor11a].
What happens is that the deterministic system has trajectories in the border
surface 1lTx = 1. The vector field that drives the equation in the border is
G(x), where 1lTG(x) = 0 and G(x) is a linear combination of BTx+ µq and
BTx (the vectors fields corresponding to the drift in the interior and in the
border). Then G(x) = (1 − φ(x))(BTx + µq) + φ(x)BTx with 1lTG(x) = 0
that leads to φ(x) = 1− bTx/µ and then, computing G(x),

x′ =

{
BTx+ µq, if bTx > µ or 1lTx < 1,

BTx+ bTxq, if bTx ≤ µ and 1lTx = 1,
(2.4)

2.3.2 Convergence to fluid limit

In this section we state our main results. First we show that the scaled
stochastic process

(
XN , Y N

)
converges to a deterministic piecewise smooth

dynamical system (x, y). Processes
(
XN , Y N

)
and (x, y) are multidimen-

sional (they live in IRn+1), as the number of phases for working units is n.
Convergence is in probability, uniformly in compact time intervals (u.c.p.
convergence). From the calculus of the drift for the stochastic processes in
Section 2.3 we have that the limit processes is driven by the vector field
BTx+ µq in the interior 1lTx < 1 and by the vector field BTx in the border
1lTx = 1. Very close to the border 1lTx = 1, when bTx ≤ µ the vector field
BTx + µq points outside the region 1lTx < 1, but if we consider the vector
field induced by transitions in the border, when bTx ≤ µ we have a vector
field BTx that points towards the region 1lTx < 1. Because of this, the
processes driven by those vector fields present a sliding motion, that means
that, when bTx ≤ µ, the trajectory remains in the border 1lTx = 1 driven by
a convex combination of both fields. So, we must first define the piecewise
smooth dynamical system (x, y), where y = 1 − 1lTx and x is the solution
(in the sense of Filippov) of the differential equation with discontinuous
right-hand side (2.4).

We address the existence of solutions to Equation (2.4) and we prove
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Lemma 2.1. For a differential equation x′ = F (x), with F discontinuous,
solutions are defined in the set of absolutely continuous functions, instead
of differentiable functions as in the classical case. The ODE is defined on
the region {1lTx ≤ 1} by BTx + µq on {1lTx < 1} and BTx on {1lTx = 1}.
In order to consider the framework of differential equations with discon-
tinuous right-hand sides, we extend the definition of the ODE. We define
the equation by two continuous fields, F1(x) = BTx + µq in the region
R1 = {1lTx < 1}, F2(x) = BTx in the region R2 = {1lTx > 1}, with a
region H = {x ∈ IRn : 1lTx = 1} where the field is discontinuous. The field
BTx always point towards R1. The field BTx+ µq points towards R1 when
bTx > µ and point towards R2 when bTx < µ. We find that the equation
presents transversal crossing in H for bTx > µ and a stable sliding motion
in H for bTx < µ (defined as in [Bor11a]). Transversal crossing occurs when
both vector fields point towards R1 and trajectories from R2 cross H. If tra-
jectories start in R1 or in H, with bTx > µ they go into R1. Stable sliding
motion occurs as F1 points towards R2 and F2 points towards F1 (in H, for
bTx < µ). The ODE has trajectories in the border surface H. The vector
field that drives the equation is G(x), with G = F1 in the interior and in
the border, when bTx < µ, G(x) verifies 1lTG(x) = 0 and it is a linear com-
bination of F1(x) = BTx+ µq and F2(x) = BTx, leading to Equation (2.4).
When bTx + µ, BTx + µq is tangential to H, whereas BTx points toward
R1, so the trajectories go into R1. This is called first order exit condition of
sliding motion.

Lemma 2.1. The differential Equation (2.4) has a unique solution for each
initial condition x0, with 1lTx0 ≤ 1.

Proof. From [Bor11a], in order to prove the existence of solutions we need to
verify that the field F defined as F1(x) = BTx+µq in R1 and F2(x) = BTx
in R2 is continuous in each closure R̄1 and R̄2. In addition, if we consider the
normal vector to H, 1l, we can verify that (except in the region {bTx = µ})
we have 1lTF1(x) > 0 and 1lTF2(x) < 0. These conditions mean that there
is a stable sliding motion, where the solution belongs to H, driven by G,
the linear combination of F1 and F2. In addition, unique solutions are also
defined for initial conditions in H.

Once our limit candidate is defined, we state Theorem 2.2. We recall the
definitions of the drift and the vector fields. Let UN =

(
XN , Y N , ZN

)
and

u = (x, y, 0). We have that (x(t), y(t)) = (x0, y0) +
∫ t

0 G(x(s), y(s))ds .
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Theorem 2.2. Let limN→∞X
N (0) = x0 in probability, with x0 determin-

istic. Then for all T > 0

lim
N→∞

sup
[0,T ]

∣∣(XN (t), Y N (t)
)
− (x(t), y(t))

∣∣ = 0,

in probability. The process (x, y) is defined by y = 1−1lTx and x the solution
to Equation (2.4) with initial condition x0.

Proof. First, we observe that 1lTXN (t) + Y N (t) + 1lTZN (t) = 1, and that
limN→+∞ sup[0,T ] Z

N (t) = 0. Then, in order to prove that

lim
N→+∞

sup
[0,T ]

∣∣(XN (t), Y N (t)
)
− (x(t), y(t))

∣∣ = 0

in probability, we only need to prove that

lim
N→+∞

sup
[0,T ]

∣∣XN (t)− x(t)
∣∣ = 0

in probability. In the proof of this theorem we follow the approach of
[Bor11b].

sup
[0,T ]

∣∣XN (t)− x(t)
∣∣ ≤ ∣∣XN (0)− x(0)

∣∣ (2.5)

+ sup
[0,T ]

∣∣∣∣XN (t)−XN (0)−
∫ t

0
βX
(
UN (s)

)
ds

∣∣∣∣ (2.6)

+ sup
[0,T ]

∣∣∣∣∫ t

0
βX
(
UN (s)

)
ds−

∫ t

0
F
(
XN (s)

)
ds

∣∣∣∣ (2.7)

+ sup
[0,T ]

∣∣∣∣∫ t

0
F
(
XN (s)

)
ds−

∫ t

0
G
(
XN (s)

)
ds

∣∣∣∣ (2.8)

+ sup
[0,T ]

∣∣∣∣∫ t

0
G
(
XN (s)

)
ds−

∫ t

0
G (x(s)) ds

∣∣∣∣ (2.9)

We want to prove that (2.6), (2.7) and (2.8) converge to 0 in probability. So,
provided that the initial condition XN (0) converges to x(0), we have that,
with probability that tends to 1 with N ,

sup
[0,T ]

∣∣XN (t)− x(t)
∣∣ ≤ ε+ sup

[0,T ]

∣∣∣∣∫ t

0
G
(
XN (s)

)
ds−

∫ t

0
G (x(s)) ds

∣∣∣∣ .
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Using that G is piecewise linear and Gronwall inequality, we obtain the
bound sup[0,T ]

∣∣XN (t)− x(t)
∣∣ ≤ εeKT , which leads to

sup
[0,T ]

∣∣XN (t)− x(t)
∣∣→ 0

in probability. We study the convergence of (2.6), (2.7) and (2.8). To show
the convergence of (2.6), we first notice that

(2.6) ≤
∣∣∣∣UN (t)− UN (0)−

∫ t

0
β
(
UN (s)

)
ds

∣∣∣∣ .
Convergence follows from the representation of the process as the initial
condition plus the integral of the drift plus a martingale term. The mar-
tingale term goes to 0 with N because of the scaling. Let us define for
a Markov chain V ∈ IRd, with transition rates rv(x) from x to x + v,
α(x) =

∑
v |v|2rv(x). Let us also call α the corresponding object for UN .

Convergence of (2.6) can be then proved using Proposition 8.7 in [DN08],
that states that

E

(
sup
[0,T ]

∣∣∣∣UN (t)− UN (0)−
∫ t

0
β
(
UN (s)

)
ds

∣∣∣∣2
)
≤ 4

∫ T

0
α
(
UN (s)

)
ds.

As in our scaling sup[0,T ] α
(
UN (t)

)
∼ O(1/N), convergence holds.

To prove that (2.7) converges to 0 in probability we consider the last m
coordinates of (2.6), corresponding to the phases at the repairman. As we
have proved that (2.6) converges to 0 in probability, we conclude that∫ t

0

(
bTXN (s)1{1lTXN (s)=1}p+AT Z̃N (s) + aT Z̃N (s)1{Y N (s)>0}p

)
ds

converges to 0 in probability. Multiplying by µ1lT (AT )−1,∫ t

0

(
−bTXN (s)1{1lTXN (s)=1} + µ1{1lTXN (s)<1} − a

T Z̃N (s)1{Y N (s)>0}

)
ds

(2.10)

goes to 0 in probability. In addition, 1lTβX + βY + 1lTβZ = 0. Then, as∫ t
0 βZ

(
UN (s)

)
ds converges to 0 in probability,∫ t

0

(
1lTβX

(
UN (s)

)
+ βY

(
UN (s)

))
ds
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also converges to 0 in probability and it is equal to∫ t

0

(
−btXN (s)1{1lTXN (s)=1} + aT Z̃N (s)1{Y N (s)=0}

)
ds. (2.11)

Then, considering the sum of Equations (2.10) and (2.11), we obtain

lim
N→+∞

(2.7) = lim
N→+∞

sup
[0,T ]

∫ t

0

(
aT Z̃N (s)q − µ1{1lTXN (s)<1}q

)
ds = 0.

The convergence of (2.8) can be proved by approximating the continuous
process in the border by a discrete process with the same jumps. As our
model verifies the hypotheses of [Bor11a], the same proof that in Lemma 3
of [Bor11b] holds.

Let us study the behavior of the system defined by Equation (2.4) by
studying its fixed points. We observe that 1/µ is the mean of the phase-type

distribution (m, p,A). We define 1/λ = −1lT
(
BT
)−1

q, the expected value
of the phase-type distribution (n, q,B), and

ρ =
µ

λ
. (2.12)

We identify three different behaviors, that we call (using the same definitions
as in [Rob03] for the M/M/N/N queue) sub-critical when ρ < 1, critical
when ρ = 1 and super-critical when ρ > 1.

Sub-critical case, ρ < 1. The mean repair time per unit 1/µ is greater than
the mean lifetime, so we find an equilibrium with a positive number
of broken units in the system. When we compute the fixed points in
Equation (2.4) the fixed point is an interior point in 1lTx ≤ 1, and it
is a global attractor.

Super-critical case, ρ > 1. When ρ > 1, intuitively the repairman is more
effective, and we have an equilibrium with all the units (in the de-
terministic approximation) working. The fixed point is also a global
attractor, and it is in the border 1lTx = 1.

Critical case, ρ = 1. In this case the fixed points for the equation in the
interior and in the border coincide, giving a fixed point in the border
that is a global attractor.

We state these results in the following lemma.
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Lemma 2.3. There are three different behaviors for Equation (2.4):

ρ < 1 (sub-critical). There is a unique fixed point x∗ that is a global
attractor and verifies 1lTx∗ = ρ < 1:

x∗ = −µ(BT )−1q, (2.13)

ρ > 1 (super-critical). There is a unique fixed point x∗ that is a global
attractor and verifies 1lTx∗ = 1 and bTx∗ < µ:

x∗ = −λ(BT )−1q, (2.14)

ρ = 1 (critical). There is unique fixed point x∗ given by equations (2.13) or
(2.14). It is a global attractor and verifies 1lTx∗ = 1 and bTx∗ = µ = λ.

Proof. First, we compute the fixed points of both fields: BTx + µq in IRn,
and (BT + qbT )x in {1lTx = 1}. We will exploit the linearity of the field in
each region where it is continuous. Then we discuss in terms of ρ.

The fixed point for BTx + µq is x∗1 = −µ(BT )−1q. We recall that BT

is regular due to the properties of phase type distributions. In addition,
the eigenvalues of BT are all negative (since BT has the same eigenvalues
than B). Matrix B has a negative diagonal, and the sum of all non diagonal
entries per row (that are all positive) is less than or equal to the absolute
value of the diagonal element. This is because the sum of each row of
B̂ is 0 and the last column (that does not belong to B) has non-negative
entries. Then, considering the field in IRn, we have that x∗1 = −µ(BT )−1q
is a global attractor. In addition, as 1lTx∗1 = ρ, we have that x∗1 is an
interior point of R1 iff ρ < 1, x∗1 is an interior point of R2 iff ρ > 1, and
x∗1 ∈ H ∩ {bTx = µ} iff ρ = 1. We observe that when ρ ≥ 1, as x∗1 is the
unique fixed point of BTx+ µq, and the vector field points outside R1, the
solution of x′ = BTx+ µq is pushed towards H.

Now we consider the fixed point of (BT + qbT )x in {1lTx = 1}. As
b = −B1l, we have that (BT +qbT )x = 0 iff (I−q1lT )BTx = 0, where I is the
identity matrix. As BT is invertible, if v is an eigenvector of q1lT with eigen-
value 1, x∗1 = (BT )−1v is a fixed point. Matrix q1lT has eigenvalues 0 and 1
and, as q1lT has range 1, the dimensions of the corresponding eigenspaces are
respectively n− 1 and 1. Then there is a one-dimensional space with eigen-
value 1, that intersects {1lTx = 1}, giving the fixed point x∗2 = −λ(BT )−1q.
Since 1lTx∗2 = 1, we have that x∗2 ∈ H. In addition x∗2 ∈ H ∩ {bTx < µ} iff
ρ > 1, x∗2 ∈ H ∩ {bTx > µ} iff ρ < 1 and x∗2 ∈ H ∩ {bTx = µ} iff ρ = 1.
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We also have that, restricted to H, x∗2 is a global attractor, so in the case
of ρ ≤ 1, the solution in H is pushed to the region {btx > µ}, where the
solution is again driven by the field BTx+ µq, so the solution that starts in
H does not remain in H for ρ < 1.

Theorem 2.4. The system in stationary regime XN (∞) converges in prob-
ability to x∗, where x∗ is the unique fixed point of Equation (2.4).

Proof. To prove the convergence in stationary regime, we use the results
in [HB12]. In Theorem 5 of [HB12] it is proved convergence in stationary
regime to the fixed point for piecewise smooth dynamical systems. This is
an extension of a general result in [BLB08]. The hypotheses needed are that
the fixed point is a unique global attractor and regularity assumptions for
the trajectories. We use Lemma 2.3 to characterize the fixed point. The
assumptions about the regularity of the trajectories are the following: the
changes of the vector field (such as transversal crossings) are bounded; the
number of points in which sliding motion starts or terminates is bounded;
and sliding motion occurs on H with both vectors having a non-null compo-
nent normal to H. These conditions are verified in our case, where solutions
are piecewise linear and the discontinuity surface H is a hyperplane. Then
applying Theorem 5 in [HB12] we obtain Theorem 2.4.

We observe that the fixed point depends only on the repair process only
through the mean repair time, but it does depend on matrix B. This means
that different lifetime distributions with the same mean lead to different
stationary behaviors.

2.4 Numerical examples

We consider the repairman problem with N = 100 units, for different phase
type time distributions and for different values of ρ. The parameters are
defined in Section 2.2 and ρ is defined in equation (2.12). As initial condition
we fix the total number of working units and sample the number in each
phase according to the phase type initial distribution. We show the scaled
number of working units in each phase. We illustrate the convergence to
the ODE’s fixed point x∗ and the sliding motion. The parameters for each
example (figure) are given in Table 2.1.

Exponential life-time and hypoexponential repair time. In Figure 2.1 we
consider exponential life-time and sums of independent exponentials
for the repair time. We represent for each parameter set the evolution
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with time of the stochastic process XN and we show the convergence
to the fixed point x∗.
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Figure 2.1: Exponential life-time and hypoexponential repair time. In the
right we show the sliding motion.

Hypoexponential life and repair time, sliding motion. In Figure 2.2 we con-
sider two phases both in the life and repair times (both distributions
are hypoexponential). At the left we represent, for each parameter
set, the evolution with time of the stochastic processes XN

1 and XN
2

and the ODE’s solution (x1, x2). We also illustrate the convergence to
the fixed point x∗ = (x∗1, x

∗
2). At the right we represent, for each pa-

rameter set, the trajectory of process XN , the trajectory of the ODE’s
solution x and the fixed point. Depending on the initial condition, we
find sliding motion (as shown in the bottom figures), but, as we have
the same parameters, both trajectories converge to the fixed point.

Hypoexponential life-time with three phases and exponential repair time.
In Figure 2.3 we consider three phases (hypoexponential) in the life-
time and exponential repair time. At the left we represent the evolu-
tion with time of the stochastic processes XN

1 , XN
2 , XN

3 and we show
the convergence to the fixed point x∗ = (x∗1, x

∗
2, x
∗
3). At the right we

represent the trajectory of process XN and the fixed point. The ex-
ample at the top has ρ < 1. The example at the bottom has ρ > 1,
so we find sliding motion in the plane 1lTx = 1 and the fixed point is
also in the same plane.
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2.5 Asymptotic distribution

The next issue is, given that the processes has a deterministic limit, the
asymptotic of the difference behavior between the process and its limit,
where we distinguish different behaviors.

2.5.1 Sub-critical regime

Proposition 2.5. If for T > 0 the trajectories of the solution x to the
Equation (2.4) remains in the interior of the state space and

√
N(XN (0)−

x(0)) ⇒ V (0), with V (0) deterministic, then the system has a Gaussian
limit, that is

√
N(XN (t) − x(t)) ⇒ V (t), with V a Gaussian processes in

Rk,

Proof. The proposition derives from a general result from Ethier y Kurtz
(Theore 2.3, p. 458 [EK86]), averaging the variables that characterize the
repairing processes. However the variables involving the phase at the re-
pairman appear when computing the covariance matrix for limit process,
deterring to obtain an analytic expression.

2.5.2 Critical regime for exponential case

Now we consider the case when fluid limit trajectories remain part of the
time at the border, that may be due to the presence at the border of the
fixed point, or due to the initial conditions if we start at the border, or
trajectories that hit the border, remain some time there and then converge
to the fixed point. In this case the asymptotic distribution is not Gaussian.

We study this phenomenon by simulation, considering the total time of
working units 1lTXN (t) when the trajectories verify 1lTx(t) = 1. Theoreti-
cally we only can show a geometric distribution, with a different scaling, in
the case of exponential life and repair times. We expect from simulations
that this holds with phase type distributions but we don’t have a proof of
this fact.

Proposition 2.6. If life and repair times are exponentially distributed with
parameters λ and µ, respectively, and ρ > 1, we have that N − XN (t)
converges to a geometric distribution with parameter 1/ρ.

Proof. In the exponential case we observe that the system has the same drift
as a M/M/N/N queue with service time λ and interarrival times exponen-
tially distributed with mean 1/µ. We consider that life time is service time
in the M/M/N/N queue, whereas service time at the repairman becomes
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interarrival time for the M/M/N/N model. In this analysis, when N units
are working at the MRM model, we have that the N servers are busy in the
M/M/N/N queue. To conclude, we use results from [Rob03] (Prop. 6.19,
p. 169) for this queue.

2.6 Conclusions Machine Repairman Model

In this chapter we study the PH/PH/1//N model, that gives more gen-
erality in repair and life-times, at the same time that presents the diffi-
culty to deal with different time scales in the fluid limit. We obtain a
fluid limit considering these different time scales following the approaches
from [BKPR05, AEJV13]. The averaging phenomena due to the different
time scales also appears when analyzing the fixed point for the fluid limits,
where we find that it only depends on the repair time by its mean, showing
an insensitivity property with respect to the life-time distribution.

We treat also the problem of discontinuous transition rates, where we
obtain a piecewise smooth dynamical system. It is a switched linear system
and fixed points are obtained and analyzed using arguments for linear ODEs.
In the case where asymptotically all units are working we find sliding motion
in the border border of the state space. In this case, different from the two
other chapters, the region where sliding motion lies has higher dimension
and depends on the number of phases in the original model. This fact
hinders to analyze the asymptotic distribution around the limit, that it is
only considered in this work for the exponential case. As in the exponential
case, we expect a non- Gaussian behavior.
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Figure 2.2: Hypoexponential life and repair time (parameters in Table 2.1).
The bottom figure shows the sliding motion.
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Figure 2.3: Hypoexponential life-time and exponential repair times (param-
eters in Table 2.1). The bottom figures shows the sliding motion and the
fixed point in the plane 1lTx = 1 at the right.
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Table 2.1: Parameters for Figures 2.1, 2.2 and 2.3.

Fig.2.1(left) Fig.2.1(right)

A

(
−1 1

0 −2

) (
−2 2

0 −3

)
B −1 −1
p (1, 0) (1, 0)
q 1 1

XN (0) 0.75N 0.75N
ρ 0.6667 1.2

Fig.2.2(top) Fig.2.2(bottom)

A

(
−1 1

0 −2

) (
−1 1

0 −2

)
B

(
−2 2

0 −3

) (
−2 2

0 −3

)
p (1, 0) (1, 0)
q (1, 0) (1, 0)

XN (0) 0.75N N
ρ 0.5556 0.5556

Fig.2.3(top) Fig.2.3(bottom)

A −0.5 −1.5

B

 −3 3 0
0 −2 2
0 0 −5

  −3 3 0
0 −2 2
0 0 −5


p 1 1
q (1, 0, 0) (1, 0, 0)

XN (0) 0.75N 0.75N
ρ 0.5167 1.55
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Chapter 3

Cognitive Radio

In this chapter we analyze in the fluid limit framework a model describing
Cognitive Radio (abbreviated CR in the sequel) networks, where we present
its basic principles as a solution of spectrum underutilization and spectrum
scarcity. We propose and analyze a dynamic spectrum sharing mechanism,
where primary users have strict priority over secondary ones, with the aim
of providing to secondary users a satisfactory grade of service with a small
interruption probability. We describe the model by means of its fluid limit,
dealing with a stochastic system with discontinuous transition rates. We
study the non-differentiable deterministic approximation that we obtain,
inferring properties of the stochastic model by the analysis of fixed points.
Finally, working with the asymptotic distribution associated with the fluid
limit our main findings consist in a Gaussian limit theorem in the sub-critical
case (when the system is not loaded), and a non-Gaussian limit theorem
(under a different scaling scheme) in the critical one.

Nowadays, with the rapid development of wireless communications, the
demand on spectrum has been growing dramatically resulting in the spec-
trum scarcity problem: unlicensed bands are too crowded while licensed
bands are vastly underutilized, as it is described by several works devoted
to measuremnts [BJR+07, XFC13, JJ16].

Cognitive Radio networks, introduced by Mitola [MM99, Mit00], have
been proposed as a promising technology to solve this problem by an in-
telligent and efficient dynamic spectrum access, with different attempts for
protocols and implementation [ARR16, SV16, HHK+17, HKKS17, MH17].

In this new paradigm we can identify two classes of users: primary (PU)
and secondary (SU). PUs are the licensed users, they have allocated a certain
portion of spectrum. SUs (also called cognitive users) are devices which are
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capable of detecting unused licensed bands and adapt their parameters for
using them. The main idea is to dynamically re-allocate unused licensed
frequency bands to secondary users. One challenge then is to distribute the
spectrum holes efficiently and fairly. Another goal is to guarantee quality of
service (QoS) to the SUs.

In what follows we focus on the analysis and characterization of a dy-
namic spectrum sharing mechanism where PUs have strict priority over sec-
ondary ones, and the key variable is the number of users in the system.
We present some tools and criteria that can be used in order to improve
the mean spectrum utilization with the commitment of providing to SUs a
satisfactory grade of service and a small interruption probability.

We are interested in SUs whose service cannot be interrupted with high
probability (like a phone call or other interactive services). For these ser-
vices it is preferable to be rejected and to avoid the situation where the
connection is established and then interrupted. These decisions (enter or
not) represent a mechanism that can be adopted by the SUs as a sort of
admission control policy. We analyze two features of these types of systems:
the mean spectrum utilization and the probability that the SUs services can
be interrupted. Associated with this last issue we analyze a possible policy
in order to reduce this probability. For this purpose we analyze the whole
system with fluid limits techniques.

In more detail we consider a scenario with C subchannels to be dis-
tributed between SUs and PUs, and where PUs have strict priority. That is
to say, if a PU arrives when all the subchannels are in use, one of the SUs
will be deallocated immediately.

As an example we consider a cellular network that employs frequency
division duplexing where the operator has C frequency bands (subchannels)
to be assigned to its users (PUs). Another example is given by the digital
TV spectrum bands. In both scenarios, if there are free subchannels, the
SUs could use them with the constraint that their communications can be
interrupted at any time.

However, there are some differences between both examples: in a cellular
network PUs can use any of the C subchannels, but in the case of digital TV
each TV channel has its own frequency band. Then we assume in our model
that when a PU arrives while a SU is using its subchannel and there are free
subchannels, this SU can be moved instantly to another unused subchannel,
without any consequence to its service. If there is not a free subchannel (the
C subchannels are busy), the SUs communication will be interrupted with
consequences to its quality of service. As our model takes into account only
the number of subchannels that are being used by PUs and SUs, if there are
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free subchannels, the case of a PU that arrives to its own and a SU must be
moved instantly to another free one will be modeled as if the PU arrives to
a free subchannel.

We model the cognitive radio network as a two dimensional continuous
time Markov chain. A fluid limit approach is used to analyze the stochastic
system which is approximated by piecewise smooth dynamical system. For
this purpose we use some results that generalize, for systems with discon-
tinuous transition rates, the most classical theorems on fluid limits. One of
the main is that the position of the fixed points is decisive in defining an
effective operating point for the system. In addition we show that in many
cases, an admission control mechanism for SUs is required in order to ensure
a low probability of service interruption.

We also describe the asymptotic distribution related with the fluid limit.
This distribution depends strongly on the fixed points of the determinis-
tic approximation, both with and without admission control, and we find,
depending on the parameters of the model, Gausssian and non-Gaussian
asymptotic distributions. The asymptotic distribution allows to analyze the
interruption probability for SUs, giving some kind of confidence bounds valid
when the number of users is large. In the case of a non-Gaussian distribution
the stationary regime and its limit are described explicitly in a simplified
case, in the one-dimensional instead of two-dimensional situation.

There are related works on Cognitive Radio that use fluid model ap-
proaches, being representative examples [SFDS12, AA14, KB15, RLBB17,
RBB18]. In [AA14], although the authors study an admission control mech-
anism over SUs, they do no obtain an analytical expression of QoS metrics,
they only evaluate them through simulations. In [KB15] the authors study
preemptive and non-preemptive priority queuing. The affected SU (which
is deallocated when a PU needs a subchannel and they are all in use) has to
wait in the system until a subchannel is available again (in the paper it is
assumed the existence of a buffer), in our case we consider a total interrup-
tion of the communication, with no buffer. In [SFDS12] the authors study
a spectrum sharing allocation for PUs and SUs where preemption can occur
in three different schemes by studying a two-dimensional M/M/C/C. They
obtain the mean number of PUs and SUs, the blocking probabilities, and
the dropping probability for SUs, but they do not investigate the behavior
of the system when admission control mechanisms are applied. Looking to
other features of CR networks, [RLBB17] approximates by means of fluid
limits the medium access probability for PUs and also for SUs, and [RBB18]
characterizes the CR network using fluid limits but the focus is on the eco-
nomical problem in order to optimize the profit.
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This is a joint work with C. Rattaro and P. Belzarena, and many issues
exposed here are also presented by C. Rattaro in [Rat18].

3.1 Model description

In this section we introduce our stochastic model for the number of primary
and secondary users in the system as a two-dimensional CTMC. This is
a comprehensive and although simple model for the system under study,
however, it does not have an analytical solution. Therefore, we introduce in
Section 3.2 a scaled version of the CTMC, in order to find a fluid limit that
allows us to study the system analytically.

We model the arrival processes for both type of users as independent
Poisson processes, and the service times are also independent and expo-
nentially distributed random variables. We also model the possibility of
admission control decisions when a SU arrives to the system (SUs shall de-
cide, depending on the state of the system, whether to enter or not). We
associate one user with one channel.

In this context a general model and its variations due to the admission
control policy assumptions are stated in the following definitions.

Definition 3.1 (General model). Consider a CTMC (X1, X2) defined as
follows.

X1(t), X2(t): number of PUs and SUs at time t respectively,

C: total number of identical subchannels, therefore, the state space is the
subset:

E = {(x1, x2) ∈ N2 : 0 ≤ x1 ≤ C, 0 ≤ x2 ≤ C, x1 + x2 ≤ C}, (3.1)

λ1, λ2: arrival rates for PUs and SUs respectively (independent Poisson
arrivals),

µ1, µ2: service rates for PUs and SUs respectively (independent exponen-
tially distributed service times),

a(x1, x2) : E → R, admission decision function for SUs, and represents the
probability that a SU that arrives starts being served when there are
x1 PUs and x2 SUs.

Thus the stochastic process (X1(t), X2(t)) has transition rates q((x1, x2), (x′1, x
′
2)),

from state (x1, x2) to state (x′1, x
′
2), defined by:
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q((x1, x2), (x1 + 1, x2)) = λ1, if x1 + x2 < C,

q((x1, x2), (x1 − 1, x2)) = µ1x1,

q((x1, x2), (x1, x2 + 1)) = a(x1, x2)λ2, if x1 + x2 < C ,

q((x1, x2), (x1, x2 − 1)) = µ2x2,

q((x1, x2), (x1 + 1, x2 − 1)) = λ1, if x1 + x2 = C and x2 6= 0.

Definition 3.2 (Free admission control policy). We call free admission con-
trol model when in the previous definition we consider no admission control
policy, then a(x1, x2) = 1 if x1 + x2 < C and a(x1, x2) = 0 if x1 + x2 = C.

Definition 3.3 (Deterministic admission control policy). In the determin-
istic case a(x1, x2) ∈ {0, 1}; if a(x1, x2) = 1 and a SU arrives, it will start
being served, and when a(x1, x2) = 0, it will not. In this work we assume
x1 + x2 = δ, with 0 < δ < C, as an admission control boundary. That is to
say, a(x1, x2) = 1 if x1 + x2<δ and a(x1, x2) = 0 if x1 + x2≥δ.

Definition 3.4 (Probabilistic admission control policy). In the probabilistic
admission control SUs can access the system with a probability related with
the number of users in the system. Let us assume that a(x1, x2) is a contin-
uous function that vanishes close to the border γ = {(x1, x2) : x1 +x2 = C}.
In this work we consider a(x1, x2) = 1− (x1 + x2)/C.

In figure 3.1 we show transitions both in the case where there is not
admission control policy and in the case where there is a deterministic ad-
mission control.

Concerning the above formulation we may make some remarks. First
notice that PUs behave as a M/M/C/C queue, independent of the behavior
of the SUs and of the admission policy. Secondly, in this work we consider
two approaches for the admission control mechanisms: a deterministic and
a probabilistic one. Thirdly, it is important to highlight that in the case
when µ1 = µ2, for some type of admission policies a(x1, x2), the process is
a one-dimensional CTMC and the stationary distribution can be computed
explicitly. However, when µ1 6= µ2 (which represents the natural situation
in cognitive radio networks) it is not possible to obtain a closed form expres-
sion of its stationary distribution (see for example [Zha12] and the references
therein). Finally, although in the general case the stationary distribution
can be computed numerically, our approach consists in formulating the cor-
responding fluid limit in order to characterize the system behavior and study
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Figure 3.1: Transitions for CR model. Left: transitions without admission
control. Right: transitions with admission control border x1 + x2 = δ < C.

the influence of the admission control decisions in a more feasible and effi-
cient way. We infer properties of the stochastic system from the study of
fixed points of the deterministic fluid limit and the asymptotic distribution
around it, and we define practical QoS criteria for sharing spectrum policies.

3.2 Fluid model

LetN be the scaling factor, and we define, as for the original model presented
in Definition 3.1, the following sequence of CTMCs (X̃N

1 , X̃
N
2 ) and whose

state space is:
ẼN = {(Ni,Nj) : (i, j) ∈ E}

where E is defined in Equation (3.1).

Definition 3.5. Consider the sequence of CTMCs (X̃N
1 , X̃

N
2 ) defined as

follows.

X̃N
1 (t), X̃N

2 (t): number of PUs and SUs at time t, respectively,

CN : total number of subchannels,

λ1N , λ2N : arrival rates for PUs and SUs, respectively,

µ1, µ2: service rates for PUs and SUs, respectively,
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ãN (x1, x2): admission decision for SUs in each state.

The admission decision in each state should verify:

lim
N→+∞

ãN (Nx1, Nx2) = a(x1, x2).

This scaling concerns both admission control schemes presented in Sec-
tion 3.1. In the case of a deterministic admission control ãN (x1, x2) = 1
if x1 + x2 < Nδ and ãN (x1, x2) = 0 if x1 + x2 ≥ Nδ. For the probabilistic
admission control let ãN (x1, x2) = 1− (x1 + x2)/CN .

The sequence of scaled stochastic process (X̃N
1 (t), X̃N

2 (t)) has transition
rates q̃N ((x1, x2), (x′1, x

′
2)), from state (x1, x2) to state (x′1, x

′
2), defined by:

q̃N ((x1, x2), (x1 + 1, x2)) = λ1N , if x1 + x2 < CN ,

q̃N ((x1, x2), (x1 − 1, x2)) = µ1x1,

q̃N ((x1, x2), (x1, x2 + 1)) = ãN (x,x2)λ2N , if x1 + x2 < CN ,

q̃N ((x1, x2), (x1, x2 − 1)) = µ2x2,

q̃N ((x1, x2), (x1 + 1, x2 − 1)) = λ1N , if x1 + x2 = CN and x2 6= 0.

In Table 3.1 we summarize the scaled parameters and their relationship
with the original ones.

Table 3.1: Original and scaled parameters for the two-dimensional process
(X1, X2) and (X̃N

1 , X̃
N
2 ).

(X1, X2) λ1 λ2 µ1 µ2 C a

(X̃N
1 , X̃

N
2 ) λ1N λ2N µ1 µ2 CN ãN

In this scaling scheme we go from our original system in Section 3.1 to
a system where arrival rates and capacity are multiplied by N , that can
be interpreted as a large network, with many users (both PUs and SUs)
and large capacity. On the other hand, service rates in each channel are
not scaled, as for instance they depend on the service type, and they do
not increases individually, despite the total service time increases with the
number of users as µ1X̃

N
1 (t) for PUs and µ2X̃

N
2 (t) for SUs. Finally the

admission control in the large system depends only on the proportion of
resources occupied.
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We consider now the scaled process (XN
1 , X

N
2 ), defined by

(XN
1 , X

N
2 ) = (X̃N

1 , X̃
N
2 )/N (3.2)

and whose state space is:

EN = {(i/N, j/N) : (i, j) ∈ E}

where E is defined in Equation (3.1).
This scaled process will converge to the deterministic fluid limit. In order

to state the fluid limit result we verify that our process satisfies

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣ 1

N
Q̃N

(
X̃N

1 (t), X̃N
2 (t)

)
−Q

(
XN

1 (t), XN
2 (t)

)∣∣∣∣ = 0

in probability (equation (A.3) in Appendix A).
We compute the drift in the following proposition.

Proposition 3.6. The drift for the process stated in Definition 3.1 is

Q(x1, x2) =

(
λ1 − µ1x1

λ2a(x1, x2)− µ2x2

)
if x1 + x2 > C;

Q(x1, x2) =

(
λ1 − µ1x1

−λ1 − µ2x2

)
if x1 + x2 = C, x2 > 0;

Q(x1, x2) =

(
−µ1x1

0

)
if (x1, x2) = (C, 0).

The drift Q̃N (x1, x2) for the corresponding scaled process presented in
Definition 3.5 verifies

1

N
Q̃N

(
X̃N

1 , X̃
N
2

)
= Q

(
XN

1 , X
N
2

)
.

Proof. We compute the drift of (X1, X2) defined as:

Q(x1, x2) =
∑

(x′1,x
′
2)∈E

q((x1, x2), (x′1, x
′
2))
[
(x′1, x

′
2)− (x1, x2)

]
.
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Q(x1, x2) = λ1

(
1
0

)
+ a(x1, x2)λ2

(
0
1

)
+ µ1x1

(
−1

0

)
+ µ2x2

(
0
−1

)
,

if x1 + x2 < NC,

Q(x1, x2) = λ1

(
1
−1

)
+ µ1x1

(
−1

0

)
+ µ2x2

(
0
−1

)
,

if x1 + x2 = C and x2 > 0,

Q(x1, 0) = µ1x1

(
−1

0

)
,

if x1 = C and x2 = 0.

We compute the drift of (X̃N
1 , X̃

N
2 ) defined as:

Q̃N (x1, x2) =
∑

(x′1,x
′
2)∈ẼN

q̃N ((x1, x2), (x′1, x
′
2))
[
(x′1, x

′
2)− (x1, x2)

]
.

Q̃N (x1, x2) = Nλ1

(
1
0

)
+ ãN (x1, x2)Nλ2

(
0
1

)
+ µ1x1

(
−1

0

)
+ µ2x2

(
0
−1

)
,

if x1 + x2 < NC,

Q̃N (x1, x2) = Nλ1

(
1
−1

)
+ µ1x1

(
−1

0

)
+ µ2x2

(
0
−1

)
,

if x1 + x2 = NC and x2 > 0,

Q̃N (x1, 0) = µ1x1

(
−1

0

)
,

if x1 = NC and x2 = 0.

Then we replace (x1, x2) by (Nx1, Nx2) in the previous equations and di-
vide by N . We have that ãN (Nx1, Nx2) = a(x1, x2) for the three different
admission control schemes presented in Section 3.1.

In deterministic admission control a(x1, x2) = 1 if x1+x2 < δ and a(x1, x2) =
0 if x1 +x2 ≥ δ and ãN (x1, x2) = 1 if x1 +x2 < Nδ and ãN (x1, x2) = 0
if x1 + x2 ≥ Nδ. Then ãN (Nx1, Nx2) = 1 if x1 + x2 < δ and
ãN (Nx1, Nx2) = 0 if x1 + x2 ≥ δ. The same is true for the case
of free admission control but considering a(x1, x2) = 1 if x1 + x2 < C.

In the probabilistic admission control we have that, for all N ,

ãN (Nx1, Nx2) = a(x1, x2) = 1− (x1 + x2)/C.
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According to that we can conclude that

1

N
Q̃N

(
X̃N

1 , X̃
N
2

)
= Q

(
XN

1 , X
N
2

)
.

Classical results on convergence of Markov processes assume some regu-
larity properties of the fluid ODE, i.e. the vector field Q(x1, x2) defining the
ODE must be a Lipschitz continuous function in the domain of interest. It
is a sufficient condition for existence and uniqueness of solutions given initial
conditions. In our system this regularity condition does not always hold. In
this context, using results obtained by Bortolussi in [Bor11a, Bor16], it is
possible to determine a PWSDS that is the fluid limit.

In all cases (free, deterministic and probabilistic admission control) we
have a discontinuous drift that leads to a differential equations with dis-
continuous right-hand side and to the presence of sliding motion, (see Ap-
pendix B) as we show in the following subsections.

3.2.1 Free admission control policy

In this subsection we assume that a(x1, x2) = 1 for all (x1, x2) ∈ R1 such
that R1 = {(x1, x2) : x1 + x2 − C < 0}, 0 otherwise. The goal is to
study the behavior of the system without any intervention: if a SU ar-
rives and there is at least one idle subchannel, the SU will be served. Here
we have discontinuous transition rates, as in the border of the state space
γ = {(x1, x2) : x1 + x2 − C = 0} we have a(x1, x2) = 0. As we explained,
these discontinuities lead to a deterministic limit whose trajectories are con-
tinuous but not differentiable. Moreover, limit trajectories will stay in the
border of the state space then we will show the existence of sliding motion.

Proposition 3.7. Let Q1(x1, x2) and Q2(x1, x2) be vector fields, both
smooth in R1 and γ respectively such that

Q1(x1, x2) =

(
λ1 − µ1x1

λ2 − µ2x2

)
, Q2(x1, x2) =

(
λ1 − µ1x1

−λ1 − µ2x2

)
,

and let n(x1, x2) be the normal vector to the boundary γ (nT (x1, x2) =
(1, 1) for all (x1, x2) ∈ γ) then we have a PWSDS driven by the following
equations.

If x1 + x2 < C or λ1 + λ2 ≤ µ1x1 + µ2x2:{
x′1 = λ1 − µ1x1,
x′2 = λ2 − µ2x2.

,
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and if x1 + x2 = C and λ1 + λ2 > µ1x1 + µ2x2:{
x′1 = λ1 − µ1x1,
x′2 = −λ1 + µ1x1.

.

Proof. Consider x on the border γ and n(x) the normal vector to the border.
We have that nT (x1, x2)Q1(x1, x2) = 0 ⇔ λ1 + λ2 − µ1x1 − µ2x2 = 0
and nT (x1, x2)Q2(x1, x2) = 0 ⇔ −µ1x1 − µ2x2 = 0. Then, for studying
nT (x1, x2)Qi(x1, x2) we have several cases depending on the position of the
line λ1 + λ2 − µ1x1 − µ2x2 = 0. It is clear that it depends on the values
of λ1, λ2, µ1 and µ2. In particular, we have that nT (x1, x2)Q1(x1, x2) > 0
if λ1 + λ2 − µ1x1 − µ2x2 > 0, Q1 and n are tangent in the points over
the line λ1 + λ2 − µ1x1 − µ2x2 = 0 and nT (x1, x2)Q1(x1, x2) < 0 if λ1 +
λ2 − µ1x1 − µ2x2 < 0. On the other hand, nT (x1, x2)Q2(x1, x2) < 0 in γ
independently of the parameters λi and µi. Because of this we are in the
presence of sliding motion when −µ1x1 + µ2x2 < λ1 + λ2 and x1 + x2 = C.
In that case we define the differential inclusion by a convex combination
g(x1, x2) = (1 − α(x1, x2))Q1 + α(x1, x2)Q2 verifying nT (x1, x2)g(x1, x2) =
0 (the solution cannot escape from the border). Computing α(x1, x2) we
obtain

α(x1, x2) =
µ1x1 + µ2x2

λ1 + λ2

then substituting in g(x1, x2) the result is proved.

Let
(x1(t), x2(t)) (3.3)

be the PWSDS that is the solution to the previous equations with initial
condition (x1(0), x2(0)). Next we present the fluid limits results.

Theorem 3.8. Consider the process (X̃N
1 , X̃

N
2 ) with transition rates defined

in Table 3.1, define:

(XN
1 (t), XN

2 (t)) = (X̃N
1 (t), X̃N

2 (t))/N

and let (x1, x2) be the PWSDS defined in Equation (3.3) with initial condi-
tion (x1(0), x2(0)). If

lim
N→∞

(XN
1 (0), XN

2 (0)) = (x1(0), x2(0))

then, for all T > 0,

lim
N→∞

sup
t∈[0,T ]

∣∣(XN
1 (t), XN

2 (t))− (x1(t), x2(t))
∣∣ = 0

in probability.
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Proof. The proof follows straightforward from Theorem IV.2 in [Bor11a].
The hypotheses of this Theorem are verified in our case; i.e. the scaling
scheme of the process, as we have defined in Section 3.2 and sumarized in
Table 3.1, and the existence of a unique PWSDS with regular trajectories,
presented Subsection 3.2.1 in order to define Equation (3.3). Theorem IV.2
in [Bor11a] considers two different regions R1 and R2 with a border between
them, where the process and the PWSDS may change many times from
one region to the other and there may be several different pieces of sliding
motion at the border. In our case we have only one region and the border,
but the proof in [Bor11a] is suitable for this case. More specifically, the
proof there consists in splitting the whole PWSDS trajectory in pieces in
each region (where classical results, for example from [EK86], hold) and
in sliding trajectories at the border. For that case the proof in [Bor11a]
consists in replacing the discontinuous drift by the sliding vector field and
prove convergence by an uniformization procedure. The proof of Lemma 3
in [Bor11b] that considers two different regions is valid for the case with a
region and its border.

In our case, as we in fact have a switched linear system we only have one
piece of sliding motion, and as our initial condition can only be in R1 we
have three cases. In the first case the deterministic trajectory stays all the
time in R1 and classical results hold. In the second case the trajectory starts
in R1 and then presents sliding motion and stays at the border for t→∞.
In the last case the trajectory PSWDS starts on R1 or at the border, then
presents sliding motion and exits at the border, and then remains in R1. In
that case we need to check the exit conditions for the sliding motion, that
are guaranteed because both vector fields are not tangential to the border
at the same time (let us recall that Q2 always points towards R1).

An alternative approach can be done following [SW95]. In Chapter 8
the authors define what they call flat boundary process, that is a Markov
process where transitions at the border are different from transitions in the
interior of the state space, and transition rates are discontinuous at the
border. Under some regularity conditions the authors of [SW95] obtained
very similar results than [Bor11a] they prove existence and uniqueness for
the solution of the PWSDS and they prove convergence to such systems.
In their presentation the coefficients of the convex combination defining
the sliding vector field have a probabilistic interpretation. They consider a
process with three coordinates, where the first two correspond to PUs and
SUs as ours, and the third, valued 0 or 1 indicates if the system is at the
border or not. With the same scaling as ours the third coordinate tends to
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0 when scaled. In addition, as transition rates in the interior are smooth,
while process stays in the interior the scaled process (dividing by N) changes
a little. On the other hand, the number of jumps from the interior to the
border per time unit increases with N , so the third coordinate that indicates
where the process is reaches its invariant distribution before the number of
PUs and SUs. In that interpretation the coefficient α is the probability or
the proportion of time that the process spends at the border and (1 − α)
the the proportion of time that the process spends in the interior.

For further work concerning fluid limits, including systems with discon-
tinuous rates we also refer to [GG12, JS14, Bor16].

In the context of fluid limits it is usual to infer from the fixed point
analysis of the deterministic system the behavior of the stochastic one in the
stationary regime. If there is a unique fixed point that is a global attractor,
the stochastic invariant distributions converges in probability to this fixed
point [BLB08, LB10b, TT17]. In what follows we will exploit this general
result.

Proposition 3.9. Considering a(x1, x2) = 1 for all (x1, x2) : x1 + x2 < C,
and 0 otherwise, letting R1 and γ be the above defined zone and border and
setting (x∗1, x

∗
2) as the PWSDS fixed point, then:

a. If λ1
µ1

+ λ2
µ2
< C, then the fixed point (x∗1, x

∗
2) =

(
λ1
µ1
, λ2µ2

)
∈ R1 and the

mean system utilization is λ1
µ1

+ λ2
µ2

(sub-critical case).

b. If λ1µ1 +λ2
µ2
≥ C and λ1

µ1
< C, then the fixed point (x∗1, x

∗
2) =

(
λ1
µ1
, C − λ1

µ1

)
∈

γ and the mean system utilization is C (critical case).

c. If λ1
µ1
≥ C, then the fixed point (x∗1, x

∗
2) = (C, 0) ∈ γ and the mean

system utilization is C (critical case).

Proof. Let Q1 and Q2 be the velocity vectors, both continuous in R1 and γ
respectively:

Q1(x1, x2) =

(
λ1 − µ1x1

λ2 − µ2x2

)
, Q2(x1, x2) =

(
λ1 − µ1x1

−λ1 − µ2x2

)
,

and let n(x1, x2) be a normal vector to the line γ = {(x1, x2) : x1 +x2 = C},
so that nT (x1, x2) is collinear with (1, 1) for all (x1, x2) ∈ γ.

As it is explained in B.1, in Appendix B when summarizing the dif-
ferent possible behaviors of both vector fields we have that all possible
cases, for different values of the parameters, can be categorized into two
groups represented by Case 1 and Case 2 from Figure 3.2. In that figure
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Figure 3.2: Vector field for Case 1 (left): C = 1, λ1 = 2, λ2 = 1, µ1 = 5,
µ2 = 4 and Case 2 (right): C = 1, λ1 = 2, λ2 = 4, µ1 = 4, µ2 = 5. The solid
line represents γ and the dotted line is λ1 + λ2 − µ1x1 − µ2x2 = 0. The
region R1 is defined by R1 = {(x1, x2) : x1 + x2 < 1}.

the solid line represents γ, the dotted line is λ1 + λ2 − µ1x1 − µ2x2 = 0
and the vectors are Q1 and Q2. In Case 1 the PWSDS fixed point is in
R1 (Proposition 3.9.a); we call it sub-critical case. It is easy to note that
(x∗1, x

∗
2) = (λ1/µ1, λ2/µ2). On the other hand, in Case 2, the fixed point

is on γ and its value is (x∗1, x
∗
2) = (λ1/µ1, C − λ1/µ1) representing a criti-

cal case, (Proposition 3.9.b). When λ1/µ1 + λ2/µ2 ≥ C we can identify a
sliding motion behavior near the fixed point, more precisely we can affirm
that the equation solution will live on γ most of the time. Both examples
of Figure 3.2 consider λ1/µ1 < C. Finally, when the system is saturated by
PUs (λ1/µ1 ≥ C), as a corollary from Proposition 3.9.b the fixed point is
(x∗1, x

∗
2) = (C, 0) (Proposition 3.9.c).

In Figures 3.3 and 3.4 we show the deterministic approximation and a
trajectory of the stochastic processes for the Cases 1 and 2 of Figure 3.2.
In each one, in the left graphic we show the simulation of one trajectory of
the scaled Markov process and the PWSDS. In the right we show for the
same simulation the evolution on the plane of the Markov chain and the
corresponding PWSDS. In Figure 3.3 the fixed point is in R1 and in Figure
3.4 it is on γ. It is important to note that in both cases, for large time
values, the scaled number of users in the stochastic process is around the
PWSDS fixed point (x∗1, x

∗
2).
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Figure 3.3: Case 1 with parameters: N = 100, C = 1, λ1 = 2, λ2 = 1,
µ1 = 5 and µ2 = 4. The PWSDS fixed point is (x∗1, x

∗
2) = (λ1/µ1, λ2/µ2) =

(2/5, 1/4).
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Figure 3.4: Case 2 with parameters: N = 100, C = 1, λ1 = 2, λ2 = 4, µ1 = 4
and µ2 = 5. The PWSDS fixed point is (x∗1, x

∗
2) = (λ1/µ1, C − λ1/µ1) =

(1/2, 1/2).

Recalling the description of the system, if x1 + x2 = C and a PU ar-
rives, a SU will be immediately deallocated giving the subchannel to the
new PU. In this case, the QoS perceived by the SU will be affected because
of the interruption of its communication. We are interested in SUs whose
service cannot be interrupted with high probability (like a phone call or
other interactive services). With this in mind, we can relate the interrup-
tion probability with the probability that the process lives on γ. We can
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conclude that the PWSDS fixed point has to be far enough from γ to avoid
a strong impact on secondary communications. However, it has to be as
close as possible to γ to permit more spectrum utilization and a high access
probability for SUs. According to Proposition 3.9 and observing Figures
3.3 and 3.4 we can identify two cases: when the PWSDS fixed point is in
R1 and when it is on γ. For the last one, the system in stationary regime
works near γ, so the probability of service interruption is too large. Then,
the question in this case is how can we move the fixed-point? The analysis
in the subsections 3.2.2 and 3.2.3 will be concentrated on answering that
question. In particular we move the fixed point using admission control de-
cisions. On the other hand, in the next two subsections we concentrate in
cases like Case 1 (when the PWSDS fixed point is in R1). More specifically,
we concentrate our efforts on answering the question: is the fixed point far
enough from γ to assure a small interruption probability?

We study the interruption probability by means of the probability that
the system is full P (X1 +X2 = C). Both probabilities are highly related by

P (deallocate a SU) + P (block a PU) = P (X1 +X2 = C|PU arrives),

by PASTA property (Poisson Arrivals See Time Averages) the last proba-
bility is P (X1 +X2 = C) and P (block a PU) is the blocking probability for
a M/M/C/C queue.

In Section 3.3 we analyze the asymptotic distribution and provide some
practical criteria for admission control.

3.2.2 Deterministic admission control policy

In this subsection we analyze the system when a deterministic admission
control is applied. In this situation we consider γ′ = {(x1, x2) : x1 +x2 = δ}
as the admission control border, then the question is: what is a reasonable
value of δ to guarantee certain level of QoS to SUs?

In this case the fluid limit is obtained in the same way as in Subsec-
tion 3.2.1, but the sliding motion occurs in γ′.

Proposition 3.10. Let Q1(x1, x2) and Q2(x1, x2) be vector fields, both
smooth in R1 = {(x1, x2) : x1+x2−δ < 0} and R2 = {(x1, x2) : x1+x2−δ >
0} respectively such that

Q1(x1, x2) =

(
λ1 − µ1x1

λ2 − µ2x2

)
, Q2(x1, x2) =

(
λ1 − µ1x1

−µ2x2

)
,
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and let n(x1, x2) be the normal vector to the boundary γ′ (nT (x1, x2) =
(1, 1) for all (x1, x2) ∈ γ′) then we have a PWSDS driven by the following
equations.

If x1 + x2 < δ: {
x′1 = λ1 − µ1x1,
x′2 = λ2 − µ2x2.

,

else, if x1 + x2 − δ = 0 (γ′):{
x′1 = λ1 − µ1x1,
x′2 = −λ1 + µ1x1.

,

and if x1 + x2 > δ: {
x′1 = λ1 − µ1x1,
x′2 = −µ2x2.

.

Notice that we consider the case λ1
µ1

< C because its practical impor-
tance.

The behavior is very similar as in the free admission control case, and
we can think in this case as a sort of translation of the free case where the
border that presents sliding motion is shifted from γ to γ′. Then, the proof
is totally analogous to Proposition 3.7.

A convergence theorem analogous to Theorem 3.8 holds, in this case
using directly Theorem IV.2 in [Bor11a], as for the deterministic policy there
are two regions R′1 = {(x1, x2) : x1 + x2 < δ}, R′2 = {(x1, x2) : x1 + x2 > δ},
and the border γ′ = {(x1, x2) : x1+x2 = δ}, where the drift is discontinuous.

In Figure 3.5 we show the scaled Markov chain an its fluid limit.
In addition we can study fixed points, by an analysis similar to Propo-

sition 3.9. However, the fixed point of the PWSDS in the most interesting
cases lies in γ′. This fact hinders the development of a design criterion like
in Subsection 3.3.1, as we do not have the same results for the asymptotic
distribution.

3.2.3 Probabilistic admission control policy

Let us consider another class of admission control: a probabilistic admission
mechanism where secondary users can access the system with a probability
related to the number of users in the system. Let a(x1, x2) be the proba-
bility that a secondary user that arrives enters the system when there are
x1 primary users and x2 secondary users. Then, when computing the en-
try rates for the whole system, the arrival rates of secondary users appear
multiplied by this probability. Let us assume that a(x1, x2) is a Lipschitz
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Figure 3.5: CR critical regime with deterministic admission control. Param-
eters: N = 100, λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5, δ = 4/5. The PWSDS
fixed point is (x∗1, x

∗
2) = (λ1/µ1, δ − λ1/µ1) = (1/2, 3/10).

function that vanishes close to the border {(x1, x2) : x1 + x2 = C} (as an
example we could choose a(x1, x2) = 1− (x1 + x2)/C), that is:

lim
x1+x2→C

a(x1, x2) = 0.

In this case we also have discontinuous transition rates in the border of
the state space. Following the same lines as for the free admission case in
Subsection 3.2.1 Proposition 3.7 we have:

Proposition 3.11. Let Q1(x1, x2) and Q2(x1, x2) be vector fields, both
smooth in R1 = {(x1, x2) : x1 + x2 − C < 0} and γ respectively such that

Q1(x1, x2) =

(
λ1 − µ1x1

λ2a(x1, x2)− µ2x2

)
, Q2(x1, x2) =

(
λ1 − µ1x1

−λ1 − µ2x2

)
,

and let n(x1, x2) be the normal vector to the boundary γ (nT (x1, x2) =
(1, 1) for all (x1, x2) ∈ γ) then we have a PWSDS driven by the following
equations.

If x1 + x2 < C or λ1 ≤ µ1x1 + µ2x2:{
x′1 = λ1 − µ1x1,
x′2 = λ2a(x1, x2)− µ2x2.
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If x1 + x2 = C and λ1 > µ1x1 + µ2x2:{
x′1 = λ1 − µ1x1,
x′2 = −λ1 + µ1x1.

This system has a unique solution with initial condition (x1(0), x2(0)).
Let:

(x1(t), x2(t)) (3.4)

be the piecewise smooth dynamical system that is the solution to the pre-
vious equations with initial condition (x1(0), x2(0)). Theorem 3.8 holds in
this context.

This probabilistic admission control is different from the deterministic
one. The solution presents sliding motion when λ1/µ1 ≥ C or when λ1/µ2 ≥
C. In the first case the system in stationary regime is always saturated by
PUs, despite of the admission control. In the second case sliding motion
depends on the initial condition but it does not influence the stationary
regime.

Let us consider the fixed point (x∗1, x
∗
2) for the processes defined by (3.4).

For θ1 = λ1/µ1 < C and θ2 = λ2/µ2, we have x∗1 = θ1 and x∗2 verifies the
equation x∗2 = θ2a(θ1, x

∗
2). Therefore, x∗2 is unique if we assume that the

equation θ2a(θ1, x) − x = 0 has an unique solution. In the example, with
a(x1, x2) = 1− x1 + x2/C, x∗2 can be obtained explicitly.

Proposition 3.12. Let a(x1, x2) continuous with lim
x1+x2→C

a(x1, x2) = 0 and

(x∗1, x
∗
2) as the PWSDS fixed point, then:

a. If θ1 < C, then x∗1 = λ1
µ1

and x∗2 = θ2a(θ1, x
∗
2) where (x∗1, x

∗
2) ∈ R1 and

the mean system utilization will be θ1 + θ2a(θ1, x
∗
2).

b. If θ1 ≥ C, then (x∗1, x
∗
2) = (C, 0) and the mean system utilization will

be C.

Proof. Results follows from similar arguments than in Proposition 3.9. In
addition we could assume hypotheses about the probabilistic admission con-
trol function a(x1, x2) that ensures asymptotic stability of the solutions (for
example negative real part of eigenvalues for the linearized system). This
condition follows in the example a(x1, x2) = 1− x1 + x2/C, where we have
a linear ODE. (See Figure 3.6 in order to analyze the vector field behavior
in two different cases.)

In particular in Figure 3.7 we show the simulation of one trajectory of
the scaled Markov process and the trajectory of the ODE.
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N = 100, C = 1, λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5. The PWSDS fixed

point, with θ1 = λ1
µ1

and θ2 = λ2
µ2

, is (x∗1, x
∗
2) =

(
θ1, θ2

(
C−θ1
C+θ2

))
= (1

2 ,
2
9).

3.3 Asymptotic distribution

3.3.1 Gaussian asymptotic distribution in sub-critical cases

Another issue studied in the context of fluid limits is the velocity of this
convergence, by looking at the fluctuations of the process around the limit.
We refer to [EK86, Rob03, HW81, SW95] for the analysis of different scaling
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regimes and limit theorems in that sense, concerning different kinds of limit
distributions.

If we consider cases when λ1/µ1 + λ2/µ2 < C and the PWSDS trajec-
tory remains all the time in R1, it is possible to apply known results (see
Theorem 2.3 of Chapter 11 in [EK86]) in order to obtain the asymptotic dis-
tribution. Let (x1, x2) be the trajectory of the PWSDS with initial condition
(x1(0), x2(0)). If:

lim
N→+∞

√
N [(XN

1 (0), XN
2 (0))− (x1(0), x2(0))] = χ(0)

with χ(0) deterministic, then:

√
N [(XN

1 , X
N
2 )− (x1, x2)]⇒ χ,

where (χ(t)) is a two-dimensional Gaussian process and ⇒ means conver-
gence in distribution. (χ(t)) has a covariance matrix determined explicitly
by:

Cov(χ(t), χ(r)) =

∫ t∧r

0
eA(t−s)G(x1(s), x2(s))eA(r−s)ds

where

A =

(
−µ1 0

0 −µ2

)
and

G(x1(s), x2(s)) =

(
λ1 + µ1x1(s) 0

0 λ2 + µ2x2(s)

)
.

In sub-critical cases, we can conclude that lim
N→+∞

P (XN
1 (t) + XN

2 (t) =

C) = 0 for all t. However, considering the defined Gaussian process and a
finite large N we can present a practical criterion to analyze if the PWSDS
fixed point is far enough from γ. In particular, we can obtain confidence
bounds and also infer an adequate number of subchannels in order to avoid
a high interruption probability for SUs.

Practical QoS design criterion in sub-critical cases

As we have shown in the simulated examples of Figures 3.3 and 3.4, the
fluid limit is an excellent approximation when N is large. Then, in prac-
tice, a possible criterion to determine whether the PWSDS fixed point is
far enough from γ would be to consider a certain confidence region of
(XN

1 (t), XN
2 (t)) assuming a large value of t. If the resulting confidence
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ellipse is entirely inside R1, certain probability of non-interruption is guar-
anteed. Otherwise, we should try to move the fixed point. In particular we
consider lim

t→+∞
G(x1(s), x2(s)) = G(x∗1, x

∗
2) and define this limit matrix as

G(∞) = G(x∗1, x
∗
2). The, following the development in [QS04] we can obtain

the covariance matrix Σ(∞) by solving:

AΣ(∞) + Σ(∞)AT = −G(∞). (3.5)

Considering a fixed relation between both classes λ1/µ1
λ2/µ2

= constant, using
the deterministic confidence ellipse we can infer which is the ideal scaling
parameter. In other words, we can obtain an idea of the optimal number of
resources (subchannels) necessary to guarantee a small interruption prob-
ability for SUs. In Figure 3.8 we show the theoretical confidence ellipses
considering different values of N for two different parameter sets (Case A
and Case B). In particular, we have considered C = 1, then N represents
the number of channels of the system (X̃N

1 (t), X̃N
2 (t)). For Case A, we have

that the ellipse is tangent to γ when N = 180. Therefore, we can conclude
that an admission control does not make sense in the system (X̃N

1 (t), X̃N
2 (t))

when N ≥ 180. In Table 3.2 we confirm that the interruption probability
of SUs can be analyzed studying the probability that the system is full of
users (blocking probability of PUs can be approximated by 0). For Case B,
we have an analogous conclusion when N ≥ 120.

Table 3.2: Full system and blocking probabilities. Values of full sys-
tem probability and blocking PU probability for Case A of Figure 3.8.
P (X̃N

1 (t) + X̃N
2 (t) > C) is approximated by a Gaussian distribution.

N 100 120 150

P (X̃N
1 (t) + X̃N

2 (t) > C) 0.031 0.0205 0.0111

P (block a PU) 0.5× 10−40 0.8× 10−48 0

3.3.2 Non-Gaussian invariant distribution

In Subsection 3.2.2 we said that for the deterministic admission control
policy we can study fixed points by an analysis similar to Proposition 3.9.
In the sub-critical regime, that is when the fixed point lies in the interior, we
have the same asymptotic Gaussian distribution that for the free admission
control case, so the proposal of Subsection 3.3.1 can be applied also for a
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deterministic admission control in the sub-critical case. However, the fixed
point of the PWSDS in the most interesting cases lies in the border γ′, where
a design criterion like in Subsection 3.3.1 is not suitable, as we do not have
the same results for the asymptotic distribution.

As in the deterministic policy scheme the hypotheses of Theorem 2.3 of
Chapter 11 in [EK86] are not verified, due to the non-smoothness of the
PWSDS at the border γ′, we consider a different asymptotic regime.

We have convergence of the stationary regime to the PWSDS fixed point
but there is not a general framework that allows to state a Gaussian asymp-
totic distribution. Therefore, we proceed to compute the asymptotic sta-
tionary distribution of the total number of users in the particular case when
service rates are the same for primary and secondary users.

The limitation to a particular case comes from our proof method that
depends on the explicit stationary distribution, that can only be explicitly
obtained for equal service rates. However, we will give some insight on the
asymptotic distribution in this case, for different service rates, based on
simulations. Further study of the general case is object of future work.

Using the limit of the invariant distribution for the particular case, we
can build some design criteria in order to find an estimation of the optimal δ
value for certain maximum level of interruption probability. Inc̃iteRattaro2018
and [RABM19] it is shown that the criteria can be extended to the case
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µ1 6= µ2 with good results for practical purposes.
We consider the original system (when µ1 = µ2) and compute its in-

variant distribution, both for the original system and the scaled one. Then
for the scaled system that depends on N we find the limit of the invari-
ant distribution when N goes to infinity. For practical purposes as in this
case, the invariant distribution can be computed explicitly. There is no need
to compute the asymptotic distribution, but theoretically we want to show
that the asymptotic distribution in the case where the equilibrium lies in
the admission control border is not Gaussian; with a different scaling, we
find a geometric asymptotic distribution. The proof is only in the particular
case when service rates are the same for primary and secondary users, that
is when the problem is one-dimensional. The scaling, different from

√
N ,

and the geometric distribution are not frequent in related works.
Consider the Markov chain defined in Section 3.1 with µ1 = µ2 where

the access control is defined considering γ′. In this case X = X1 + X2 is
a one dimensional Markov chain with state space E = {0, 1, . . . , C}, and
non-zero transition rates from i to j, q(i, j), given by:

q(i, i+ 1) =

{
λ1 + λ2 for 0 ≤ i < δ
λ1 for δ ≤ i < C

, q(i, i− 1) = iµ for 0 < i ≤ C,

where δ ∈ E denotes the border of the admission control, that is when we
have δ or more users we prohibit the access of new secondary users. Let us
observe that in the general case described in Section 3.1 the total number
of users X = X1 + X2 is Markovian only if µ1 = µ2, so the reduction to a
one dimensional Markov chain follows only in this case. In order to simplify
notation in what follows let us call ν2 = λ1 +λ2, and ν1 = λ1. We then have
the following transition rates, where ν1 < ν2:

q(i, i+ 1) =

{
ν2 for 0 ≤ i < δ
ν1 for δ ≤ i < C

, q(i, i− 1) = iµ for 0 < i ≤ C,

Table 3.3: Scaling for the one dimensional processes (X) and (X̃N ).

(X) ν1 ν2 C δ

(X̃N ) ν1N ν2N CN δN

We consider the scaled process X̃N = X̃N
1 + X̃N

2 with the scaling in
Table 3.3. Theorem 3.8 holds in this case and we also have that XN =
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Figure 3.9: PWSDS solution in the one dimensional case for two different
initial conditions. Parameters: C = 5, δ = 3, ρ1 = 1, ρ2 = 3.5 (left) and
C = 5, δ = 3, ρ1 = 1, ρ2 = 2.5 (right).

X̃N/N converges in probability, uniformly over compact time intervals to x,
given by the following equations, for 0 ≤ δ ≤ C.

If the initial condition is x(0) < δ:

x(t) =

{
ρ2 + (x(0)− ρ2)e−µt if t < τ2

δ if t ≥ τ2.

If the initial condition is x(0) > δ:

x(t) =

{
ρ1 + (x(0)− ρ1)e−µt if t < τ1

δ if t ≥ τ1,

where ρ1 =
ν1

µ
, ρ2 =

ν2

µ
, τ1 =

1

µ
log

(
x(0)− ρ1

δ − ρ1

)
and τ2 =

1

µ
log

(
x(0)− ρ2

δ − ρ2

)
.

(See Figure 3.9 for different behaviors of these solutions.)
Now we come back to the original system. As the problem now is one-

dimensional we will explicitly compute the stationary distribution of X, and
then for the scaled system X̃N for fixed N and obtain its limit when N →∞.
X is a modification of a M/M/C/C queue, where the arrivals changes their
rate depending on the number of clients in the queue. We will analyze our
system as in [Rob03] for the M/M/C/C queue. Computing the stationary
distribution π for this Markov chain:

π(i)ν2 = π(i+ 1)(i+ 1)µ for 0 ≤ i < δ,

π(i)ν1 = π(i+ 1)(i+ 1)µ for δ ≤ i < C.
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Then,

π(i) =
ρi2
i!
π(0) for 0 ≤ i ≤ δ,

π(i) =

(
ρ2

ρ1

)δ ρi1
i!
π(0) for δ < i ≤ C,

where:

π(0)−1 =
δ∑
i=0

ρi2
i!

+

(
ρ2

ρ1

)δ C∑
i=δ+1

ρi1
i!
.

The stationary distribution π̃N for the process X̃N is:

π̃N (i) =
(Nρ2)i

i!
π̃N (0) for 0 ≤ i ≤ Nδ,

π̃N (i) =

(
ρ2

ρ1

)Nδ (Nρ1)i

i!
π̃N (0) for Nδ < i ≤ C,

with:

π̃N (0)−1 =
Nδ∑
i=0

(Nρ2)i

i!
+

(
ρ2

ρ1

)Nδ NC∑
i=Nδ+1

(Nρ1)i

i!
.

Theorem 3.13. Consider the original processes with equal service rates
µ1 = µ2 and XN defined as before. The, the stationary distribution of
X̃N −Nδ converges to the distribution of an integer variable Z given by

P (Z = j) =


ρ
(ρ2

δ

)j
if j < 0,

ρ
(ρ1

δ

)j
if j ≥ 0,

where ρ1 =
ν1

µ
, ρ2 =

ν2

µ
, ρ =

(
ρ1

δ − ρ1
+

ρ2

ρ2 − δ

)−1

.

Proof. Let us compute, for 0 ≤ k < Nδ the stationary distribution π̃N (Nδ−
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k). Computing its inverse:

π̃N (Nδ − k)−1 =
(Nδ − k)!

(Nρ2)Nδ−k
π̃N (0)−1

=
(Nδ − k)!

(Nρ2)Nδ−k

(
Nδ∑
i=0

(Nρ2)i

i!
+

(
ρ2

ρ1

)Nδ NC∑
i=Nδ+1

(Nρ1)i

i!

)

=
(Nδ − k)!

(Nρ2)Nδ−k

 Nδ∑
j=0

(Nρ2)Nδ−j

(Nδ − j)!
+

(
ρ2

ρ1

)Nδ NC∑
i=Nδ+1

(Nρ1)i

i!


=

Nδ∑
j=0

(Nρ2)k(Nδ − k)!

(Nρ2)j(Nδ − j)!
+

N(C−δ)∑
j=1

(Nρ1)j(Nρ2)k(Nδ − k)!

(Nδ + j)!

= ρk2

Nδ∑
j=0

ρ−j2

Nk(Nδ − k)!

N j(Nδ − j)!
+

N(C−δ)∑
j=1

(Nρ1)j(Nρ2)k(Nδ − k)!

(Nδ + j)!
.

Using Stirling’s formula we obtain:

lim
N→∞

Nk(Nδ − k)!

N j(Nδ − j)!
=
δj

δk

and then for the first term, using dominated convergence we have:

lim
N→∞

ρk2

Nδ∑
j=0

ρ−j2

Nk(Nδ − k)!

N j(Nδ − j)!
=
(ρ2

δ

)k 1

1− δ

ρ2

For the second term we have using Stirling’s formula that:

lim
N→∞

(Nρ1)j(Nρ2)k(Nδ − k)!

(Nδ + j)!
=
(ρ1

δ

)j (ρ2

δ

)k
,

then, with dominated convergence:

lim
N→∞

N(C−δ)∑
j=1

(Nρ1)j(Nρ2)k(Nδ − k)!

(Nδ + j)!
=

ρ1

δ − ρ1

(ρ2

δ

)k
and, for 0 ≤ k < Nδ, we obtain:

lim
N→∞

π̃N (Nδ − k) = ρ

(
δ

ρ2

)k
.
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If Z̃N = X̃N−Nδ we have that the stationary distribution µ̃N of Z̃N verifies,
for j < 0, that:

lim
N→∞

µ̃N (j) = lim
N→∞

π̃N (Nδ − (−j)) = ρ
(ρ2

δ

)j
.

In the same way we compute, for 0 ≤ k ≤ NC −Nδ, π̃N (Nδ + k).

In Figure 3.10 we show the limit distribution and the stationary distribu-
tion for different values of N . We see that the limit distribution represents
a good estimation of the stationary one for all N values.
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Figure 3.10: Limit (N → ∞) of stationary distribution and stationary dis-
tributions for different N values. Parameters: C = 5, δ = 3, ρ1 = 1,
ρ2 = 3.5.
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Simulations for the general case with different service rates

The asymptotic distribution obtained in Theorem 3.13 has the drawback
that assumes equal services rates for PUs and SUs. This hypothesis is needed
because of the technique that we used to prove Theorem 3.13. Our proof,
based on [Rob03], relies on the explicit computation of the stationary dis-
tribution for the original system and for the scaled one, and in the calculus
of the limit when the scaling factor N goes to infinity. This approach is not
suitable for different service rates as there is not a closed formula for the
stationary distribution. Then, a different approach would be necessary to
obtain a non-Gaussian asymptotic distribution in the general case.

Despite of this restriction, in [Rat18] the author provides a practical QoS
criterion for δ selection, applying then our results about geometric distribu-
tion to the case of different services rates in order to design an admission
control policy. In addition, we notice that for different service rates, when
the fixed point is in the admission control border, the asymptotic distribu-
tion is non-Gaussian.

Here we analyze with simulations the case with different service rates.
We consider a deterministic admission control where the fixed point (x∗1, x

∗
2)

of the PWSDS is at the admission control border γ′. We observe that in
this case we can not obtain a Gaussian distribution as it is obtained when
the fixed point is in the interior the region {(x1, x2) : x1 + x2 < δ}. In this
last case it actually does not matter if there is a deterministic admission
control at x1 + x2 = δ or we consider the free admission control policy, in
both cases, if the fixed point is in the interior the behavior is similar. On
the other hand, when the fixed point lies in γ′, we observe that fluctuations
around the fixed point are asymmetric and much smaller than in the case
of the interior fixed point, so that scaled by

√
N as in the Gaussian case we

would not obtain such limit.
We simulate two cases, with different parameters and the same deter-

ministic admission control, one with the fixed point in the interior an the
other at γ′. In both cases the starting point is the fixed point. For both
case we show the trajectories in Figure 3.11. The case at the right is more
asymmetrical and shows less dispersion around the fixed point than the left
one. In Figure 3.12 we show the kernel density estimations of the normal-
ized fluctuations of XN

1 + XN
2 around the mean system utilization x∗1 + x∗2

and in Figure 3.13 the corresponding QQ-plots. In both pictures it is more
visible the asymmetry but specially that the distribution at the right is
concentrated at zero, and cannot be approximated by a Gaussian.
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Figure 3.11: Left: N = 100, C = 1, δ = 0.8 λ1 = 2, λ2 = 1, µ1 = 5 and
µ2 = 4. The PWSDS fixed point is (2/5, 1/4). Right: N = 100, C = 1,
δ = 0.8 λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5. The PWSDS fixed point is
(1/2, 3/10).
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Figure 3.12: Left: N = 100, C = 1, δ = 0.8 λ1 = 2, λ2 = 1, µ1 = 5 and µ2 =
4, kernel density estimation for the normalized variable XN

1 + XN
2 − 0.65.

Right: N = 100, C = 1, δ = 0.8 λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5, kernel
density estimation for the normalized variable XN

1 +XN
2 − 0.8.

Asymptotic distribution for probabilistic admission control

The previous discussion can also be extended for probabilistic admission
control.

Remark 3.14. For case a. of Proposition 3.12, for initial conditions where
there is not sliding motion, it is possible to apply the same results about
Gaussian limits. Let (x1, x2) be the trajectory of the solution with initial
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Figure 3.13: Left: N = 100, C = 1, δ = 0.8 λ1 = 2, λ2 = 1, µ1 = 5 and
µ2 = 4. Right: N = 100, C = 1, δ = 0.8 λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5.

condition (x1(0), x2(0)). If:

lim
N→+∞

√
N [(XN

1 (0), XN
2 (0))− (x1(0), x2(0))] = χ(0)

with χ(0) deterministic, then
√
N [(XN

1 , X
N
2 ) − (x1, x2)] ⇒ χ, where (χ(t))

is a Gaussian process whose matrix can be determined explicitly by:

Cov(χ(t), χ(r)) =

∫ t∧r

0
eA(t−s)G(x1(s), x2(s))eA(r−s)ds

where

A =

(
−µ1 0

0 −µ2

)
,

G(x1(s), x2(s)) =

(
λ1 + µ1x1(s) 0

0 λ2a(x1(s), x2(s)) + µ2x2(s)

)
.

In the same way as in Section 3.2.1, considering a large finite value of N
we can calculate the covariance matrix Σ(∞) solving Equation (3.5). For
instance in Figure 3.14 we illustrate different confidence ellipses (for different
N values) for the case of Figure 3.7.

Remark 3.15. For case b. of Proposition 3.12, where there is sliding mo-
tion, it is possible to apply a similar approach as in Theorem 3.13.
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Figure 3.14: Theoretical 95% confidence ellipses of (XN
1 (t), XN

2 (t)), con-
sidering different N values (N = 50, 60, 70, . . . , 300). Parameters: C = 1,
λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5.

3.4 Conclusions Cognitive Radio

We analyze a model for Cognitive Radio, with a dynamic spectrum sharing
mechanism, where primary users have strict priority over secondary ones.
We study the system without admission control policies and then propose
two types of admission control policies (deterministic and probabilistic).

For the system without admission control policies we find the fluid limit
using results form [EK86], and in particular its generalizations like in [Bor11a].

We find that, depending on the parameters of the system, trajectories
presents sliding motion in the border of the state space. In addition we study
fixed points, that can be in the border of the state space or in the interior.
As we have convergence to fixed points, we consider different admission
control policies, especially for the case where the fixed point is in the border
of the state space. When the fixed point is in the interior we also derived
the asymptotic Gaussian distribution, as a result from [EK86]. In this part
we only prove convergence on compact time intervals. Despite of this, for
a practical design we consider the limit when times goes to infinity for the
limit process in order to analyze the behavior around the fixed point. It is
object of further study the proof that in stationary regime the asymptotic
distribution is the limit when time goes to infinity of the Gaussian process.
This issue was remarked also in Chapter 1.

The same approach holds for the system with deterministic admission
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and probabilistic admission control policies. In the first case we find, that
when the system is most charged the fixed point lies in the border of the
admission control region and the limit presents sliding motion in the bor-
der of the admission control region. In this case there is not a Gaussian
asymptotic distribution. In the unidimensional case (with the same service
rates for PUs and SUs) we obtain a explicit geometric distribution under a
different scaling scheme, and we conjecture through simulations that in the
general case the distribution is non-Gaussian. On the other hand, for the
probabilistic admission control we obtain a Gaussian distribution in com-
pact time intervals, and the same as for the free admission control scheme,
it it is needed to prove in future work that the limit in stationary regime
is Gaussian, despite we also uses the Gaussian distribution for practical
design.
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Conclusions and future work

The objective of the present thesis is to apply the stochastic methodology to
the analysis of the asymptotic behavior of some telecommunications systems.

In the review of the literature we found a large amount of research in
those topics, devoted to many disciplines. Our selection focused on fluid
limits, in particular for telecommunication models, leaving aside other sim-
ilar or complementary approaches, as for example the mean field literature
most based in particle dynamics, in the sense of [Szn91].

We studied three different models from telecommunications, where the
three have some different characteristics, or different questions that we
wanted to answer, that hindered to express all models in an unique frame-
work that at the same time could be also simple to interpret. The paper
from Bortolussi [Bor16] seems to address this issue in the context of stochas-
tic Concurrent Constraint Programming. on the other hand, in this thesis
we considered separated models and sometimes we also followed different
approaches for similar problems appearing in those three models.

Our first model considered a BitTorrent-like P2P network. Our aim was
to understand carefully the passage from a stochastic model that allow to
obtain the deterministic description for leechers and seeds in a BitTorrent
network presented in the classical work of Qiu and Srikant in [QS04]. In
their work some issues about the relationship between a stochastic model
and the associated deterministic one are sketched, but are not fully treated.
In the same way we wanted to study convergence issues from stochastic to
deterministic models in the case of the work presented by Rivero and Ru-
bino [RAR10], that considers two types of leechers and implement different
policies in order to improve the performance.

For both cases we defined here a stochastic system and under a proper
scaling we found its fluid limit, using Kurt’z Theorem, obtaining almost
sure convergence in compact time intervals. We also compared the stochas-
tic model that converges to the deterministic model stated in [QS04] with
the stochastic model previously stated by de Veciana and Yang in [YdV04].
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The convergence to a fluid limit in the latter involves discontinuous transi-
tion rates, that in the first chapter were treated considering flat boundary
processes presented in [SW95]. However, in the first chapter, this is mostly
a remark but in the two other models in the thesis we needed to take ex-
plicitly into account discontinuous transition rates, following the approach
of Bortolussi in [Bor11a] and [Bor16].

When looking at the stationary regime this model is different from the
two other treated in the thesis, as for the model without scaling or for the
model with a fixed parameter N we have a Markov chain with an infinite
state space, so we needed to analyze previously the existence of a station-
ary regime. We addressed this problem using a Lyapunov function, as we
could not compute an explicit stationary distribution. Once we proved the
existence of a stationary distribution for each value of the scaled processes,
we studied the convergence in stationary regime. For this problem there
are different approaches in the literature, and for this first model we used
results presented in [SW95], whereas for the same problem in the other two
models studied here we considered results in [BLB08] and [LB10b].

Then we focused on the asymptotic distribution when we scale the pro-
cess as in the Central Limit Theorem. From [EK86] there is convergence to
a Gaussian process with an explicit covariance matrix. For our model we
also obtained a Gaussian random variable as the limit in distribution when
time goes to infinity.

The second model studied here is a Machine Repairman Model, where
we introduced phase-type distributions both in the failure and the life-times.
For this model we found a fluid limit, and in the case of exponential dis-
tributions we recovered classical results obtained in [IL73, IL74]. The main
difficulties in this model were the different scales, and we treated this issue
following [BKPR05], and discontinuous transition rates in the border of the
state space, where we used results from [Bor11a, Bor16].

For this problem we also analyzed the deterministic limit obtained and
studied its fixed point, proving that there is a global attractor. We found
different regimes (sub-critical, critical and super-critical) and when scaling
as in the Central Limit Theorem we obtained a Gaussian process in the
limit in the case of sub-critical regime. For the other cases we only found
the asymptotic distribution in the exponential case in stationary regime,
using results from [Rob03], obtaining under a different scaling (N , instead
on
√
N) a geometric asymptotic distribution.

The third model was motivated by Cognitive Radio Networks. We pro-
posed a Markov chain model and studied its fluid limit and asymptotic
distribution with the objective of defining a sort of admission control policy
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that improves the performance of the network. The objective was to avoid
high interruption probabilities for secondary users, once they are active in
the network. In this model we also have discontinuous transition rates,
treated as in [Bor11a].

We considered both deterministic and probabilistic admission controls,
based on Gaussian asymptotic distributions obtained for the sub-critical
case as in [EK86]. The rationale behind this is that we approximated the
interruption probability using the Gaussian distribution. Another possible
approach that we did not consider here is to study these probabilities as large
deviations. In fact we proved that in the stationary regime the scaled process
converges in probability to a fixed point, the fixed point of the deterministic
system obtained as limit. This means that the interruption probability is
negligible, and the Gaussian approximation is a conservative approach.

For the critical case we analyzed the problem when it is in dimension
one, for a deterministic admission control policy, and we obtained, based
on [Rob03], a mixture of geometric distributions for the limit in the station-
ary regime.

In the three models there are issues that may be explored further, as
the convergence in the sense of the Central Limit Theorem in stationary
regime, where the difficulty comes from the fact that interchanging limits
in the scaling parameter N and time requires some kind of uniformity of
convergence in the whole real line or in the scaling parameter. For this
purpose a possibility is to follow [EK86], that addressed for this issues results
from [Nor77].

In addition, as we mentioned before, we have approximated probabilities
using the Gaussian process obtained as limit, it seems that an approach
based on large deviations could complementary to these estimations.

Other issue to be addressed is the case of discontinuous transition rates,
when system switches and there are not Gaussian asymptotic distributions,
as we found in the second chapter and in the third chapter. In both cases our
approach is based in the explicit calculus of the stationary distribution. This
was possible in the unidimensional case. It is necessary to explore different
scaling schemes to look for other limiting distributions, when the problem
is not unidimensional, both in transient and stationary regime, when there
is no explicit distribution for the scaled process.
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Appendix A

Density dependent
population processes

In this appendix we summarize some of the principal results presented
in [EK86] that are used in this work. In particular results are from Chapter
11 (Density dependent population process), devoted for families of Markov
jump processes depending on a parameter, where the parameter has differ-
ent interpretations, as for example: total population size, area, or volume.
Theorem A.5 is often known in the literature as Kurtz’s Theorem. There are
many different flavours of this theorem, as for example theorems presented
in [DN08] or in [Rob03]. We also summarize here some of their results.

Definition A.1 (Markov jump process in Zd). Consider a finite set in Zd
{e1, . . . , ek}. A Markov jump process in Zd is a process U with jump direc-
tions ei and transition rates, from state u to state u+ei, q(u, u+ei) = βi(u)
for each i = 1 . . . , k.

Definition A.2 (Generator and drift). The generator of a jump Markov
process is defined by

Q(f)(u) =

k∑
i=1

q(u, u+ ei) (f(u+ ei)− f(u)) ,

where f : Zd → R is a function with compact support. The drift is defined
as

F (u) = Q(I)(u) =
k∑
i=1

q(u, u+ ei)ei =
k∑
i=1

eiβi(u).
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Remark A.3. Markov jump processes can be written in terms of indepen-
dent Poisson processes, using the random time change presented in [EK86].
If U is a jump Markov process,

U(t) = U(0) +
k∑
i=1

eiMi

(∫ t

0
βi (U(s)) ds

)
where M1, . . . ,Mk are independent standard Poisson processes.

Definition A.4 (Density dependent Markov jump process). Consider a
finite set of vectors {e1, . . . , ek} ⊂ Zd, non-negative functions β1, . . . , βk
defined in Rd. A sequence of density dependent jump Markov processes
is a sequence of processes UN : Rd → R with jump directions ei/N for
each i = 1 . . . , k and transition rates qN (u, u + ei/N) = Nβi(u) for each
i = 1 . . . , k.

Theorem A.5 (Theorem 2.1, p. 456, [EK86]). Consider a sequence of pro-
cess as in Definition A.4. Assume that, for each compact K ⊂ Zd,

k∑
i=1

|ei|βi(z) < +∞

and there exists a constant Mk such that

|F (u)− F (v)| ≤MK |u− v|.

Suppose also that UN (0)→ z0 and z verifies

z(t) = z0 +

∫ t

0
F (z(s))ds (A.1)

for every t ≥ 0. Then, for every T ≥ 0,

lim
N→+∞

sup
t∈[0,T ]

|ZN (t)− z(t)| = 0 a.s.

The proof of Kurtz’s Theorem relies on a characterization on the process
(XN , Y N ) as a sum of independent Poisson processes (one for each direction
of possible transitions) evaluated in a random time change. Under this
characterization the theorem follows from Gronwall’s inequality and the Law
of Large Numbers for the Poisson process.
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In a addition it is possible to state a Central Limit Theorem. Let ZN

be a solution of the following equation

ZN (t) = ZN (0)+
∑
l

l

N
Wl

(
N

∫ t

0
βl
(
ZN (s)

)
ds

)
+

∫ t

0
F
(
ZN (s)

)
ds (A.2)

where the Wl are independent standard Brownian motions. In [EK86] it is
proved that there the solution ZN exists.

Theorem A.6 (Theorem 2.3, p. 458, [EK86]). Suppose for each compact
subset K ⊂ E, ∑

l

|l|2 sup
z∈K

βl(z) < +∞

and that the βl and dF are continuous. Suppose ZN satisfies (A.2), z satis-
fies A.1, V N =

√
N(ZN − z), and limN→+∞ V

N (0) = V (0) constant. Then
V N ⇒N V where V is a Gaussian process with covariance matrix

Cov (V (t), V (r)) =

∫ t∧r

0
Φ(t, s)G(z(s))Φ(r, s)T ds,

with Φ(t, s) the solution to the matrix equation

∂

∂t
Φ(t, s) = dF (z(t))Φ(t, s), Φ(s, s) = I,

G(z) =
∑
`

β`(z)``
T .

As a very simplified description of the presentation in [DN08, Rob03],
the proof of this approximation result is generally based on a martingale
decomposition of the Markov process, which shows that the average behavior
of the stochastic process is captured by the drift part while the stochastic
fluctuation of second order (corresponding to the martingale) vanishes with
the scaling and limit procedure. More specifically, consider a Markov process
Z̃N (t) parametric in N and its martingale decomposition:

Z̃N (t) = Z̃N (0) +

∫ t

0
Q̃N (Z̃N (s))ds+MN (t),

where Q̃N (l) is the so-called drift of the process at state l, which is calculated
as
∑

m∈S(l−m)q(l,m), being q(l,m) the transition rate from state l to m, S
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the state space, and where MN (t) is a martingale. Consider now the scaled
process ZN (t) = Z̃N (t)/N , then:

ZN (t) = ZN (0) +
1

N

∫ t

0
Q̃N (Z̃N (s))ds+

MN (t)

N
.

If there exists a Lipschitz function Q such that:

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣∣Q̃N (Z̃N (t))

N
−Q(ZN (t))

∣∣∣∣∣ = 0 (A.3)

in probability, where | · | is the Euclidean norm, and MN (t)/N converges to
zero in probability, then ZN (t) converges in probability over compact time
intervals to a deterministic process z(t), described by the ODE:

z′(t) = Q(z(t)).

The drift Q may be interpreted as the expected rate of change of the stochas-
tic process.

This introduces the problem of finding the suitable scale for the approx-
imation. A typical scaling procedure consists in dividing the process by N
and considering transition rates multiples of N ; jumps are of order 1/N and
transition rates are of order N , which means that the product remains or
tends to a constant as N increases. We refer to [Rob03, HW81] as refer-
ences for this and other scaling regimes, under which there are different limit
results.
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Appendix B

Hybrid limits

In this appendix we present some results about fluid limits for CTMCs
with discontinuous transition rates, where the limit becomes a PWSDS. In
this work the follow the approach of [Bor11a] and [Bor11b]. More general
results are presented by the author in [Bor16]. For other references for
fluid limits for CTMCs with discontinuous transition rate we address for
example [SW95].

The main idea is to deal with an ODE with discontinuous right hand
side. That is, instead of considering an ODE x′ = F (x) with F a locally
Lipschitz function, that guarantees the existence and uniqueness of a solu-
tion given an initial condition, we consider differential equations where F
is a discontinuous function. This systems are known in the literature as
PWSDS or switching systems.

Bortolussi summarizes basic methods and results of the theory of differ-
ential equations with discontinuous right-hand sides from [FA88].

We give an informal explanation of results in [Bor11a] restricting our
attention to a system with two regions (R1 and R2). In this context we have
f1 and f2 the velocity vectors, both continuous in R1 and R2 respectively
and we define γ as the boundary between R1 and R2. In R1 and R2 we can
apply the classical results on convergence of Markov processes. The question
is what happen on γ.

B.1 Filippov solutions

In the case where the drift is discontinuous the fluid limit can be obtained
in the framework of differential equations with discontinuous right-hand
side [FA88]. In this context the differential equation is replaced by what
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is called a differential inclusion, this means that Equation (A.4) is replaced
by

x′(t) ∈ Q(x(t)) (B.1)

where Q is a set-valued mapping known as Filippov extension of Q defined
as the convex hull of the accumulation points of the drift. We define a
Filippov solution as an absolutely continuous function x(t) such that x(0) =
x0 and x′(t) ∈ Q(x(t)) almost everywhere. We refer to [Bor11a, GG12] and
references therein for a more detailed exposition.

Concretely, considering x′(t) = Q(x), Q : E → Rn, E ⊆ Rn,
⋃
Ri ⊇ E

(Ri i = 1 . . . s is a finite set of disjoint regions), where Q is smooth on Ri
and can be discontinuous only on the boundaries of Ri. We restrict our
attention to a system with two regions (R1 and R2).

Filippov proved results about existence and uniqueness of solutions. If
Q1 and Q2 are C1, Q1 −Q2 is C1 in γ (or γ′ as appropriate), h is C2 in γ
(or γ′) and at least one of nT (x)Q1(x) > 0 or nT (x)Q2(x) < 0 holds, with x
on the border γ (or γ′) and n(x) the normal vector to the border, then there
exists a unique Filippov solution from each initial condition. Considering x
on the border γ′ (or γ), there are different behaviors of a solution starting
in x depending on the value of nT (x)Q1(x) and nT (x)Q2(x):

Transversal crossing: if nT (x)Q1(x) and nT (x)Q2(x) have the same sign,
e.g. if nT (x)Q1(x) > 0 and nT (x)Q2(x) > 0 , a solution starting in R1

crosses the border and stays in R2;

Sliding motion: if (nT (x)Q1(x))(nT (x)Q2(x)) < 0 there is sliding motion,
there are two cases: unstable sliding motion when nT (x)Q1(x) < 0 and
nT (x)Q2(x) > 0 (in this case there is no uniqueness for solutions) and
stable sliding motion when nT (x)Q1(x) > 0 and nT (x)Q2(x) < 0. In
this last case, that is ours, the system cannot escape from the border,
then the solution follows a vector field obtained as convex combination
of Q1 and Q2, obtaining a new vector field

g(x) = (1− α(x))Q1 + α(x)Q2 (B.2)

with α(x) ∈ [0, 1] that verifies nT (x)g(x) = 0;

Tangential crossing: if nT (x)Q1(x) = 0 (or nT (x)Q2(x) = 0), then the
trajectory continues in the region pointed by the non-zero vector field.
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B.2 Piecewise smooth fluid limit

Now we present the model considered in [Bor11a]
Consider a model (X,D, τ,X0) where:

1. X = (X1 . . . , Xn) is a set of variables.

2. Each Xi takes values in a finite or countable domain Di ⊂ R. Usually,
but not necessarily, Di is a subset of the integers. Hence, D =

∏n
i=1Di

is the state space of the model.

3. X0 ∈ D is the initial state of the model.

4. τ = {τ1, . . . , τm} is the set of transitions, of the form τi = (ϕ(X), v, R(X))
where:

(a) ϕ(X) is a conjunction of inequalities of the form h(X) ≥ 0 or
h(X) > 0, where h’s are suitably smooth functions on D, usually
linear.

(b) v ∈ Rn, is the update vector, i.e. a vector giving the net change on
each variable caused by the transition. We require that X+v ∈ D
whenever ϕ(X) is true.

(c) r : D → R+ ∪ {0} is the rate function, which specifies the rate
of the transition as a function of the current state of the system.
We require each r to be Lipschitz continuous and bounded on D.

Consider a sequence of models (XN , DN , τN , XN
0 ) and the normalized vari-

able XN/N with the corresponding scaling assumptions:

initial conditions scale properly: xN0 = XN
0 /N ;

domains scale properly: D̂N = {X/N : x ∈ DN};

for each transition (ϕNi (X), vNi , r
N
i (X)) of the nonnormalized model, there

exists a predicate ϕi(X̂) on normalized variables, a vector vi, and a
bounded and Lipschitz function fi(X̂) : E → Rn on normalized vari-
ables, all independent of N, such that ϕN (X) = ϕi(X/N), vNi = vi and
rNi (X) = Nfi(X/N). The corresponding transition in the normalized
model is (ϕi(X̂), vi/N,Nfi(X̂)).

The drift is:
FN (X̂) = F (X̂) =

∑m
i=1 vifi(X̂)Iϕi(X̂) where Iϕi(X̂) is the indicator

function of the predicate ϕi
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Theorem B.1. Let the sequence XN of CTMC models satisfy the scal-
ing assumptions and consider the PWS system x′ = F (x), assumed to
have only two continuity regions separated by a smooth manifold. Let H
be the discontinuity surface of the PWSDS, an assume x0 ∈ H is such
that nT (x0)f1(x0) < 0 and nT (x0)f2(x0) > 0. Let x(t), t ≤ TS be the
unique solution of the PWSDS starting from x0, defined as the solution
of the ODE x′ = G(x), where G is the sliding vector field defined as in
(B.2) and TS is the time at which sliding motion terminates with first order
exit conditions.Fix T ≤ TS, T < ∞. If XN (0) → x0 in probability, then
limN→+∞ supt≤T |X̂N (t)− x(t)| = 0 in probability.

111



List of Figures

1 Fluid limit for the M/M/1 and the M/M/∞ . . . . . . . . . 11

1.1 Transitions for P2P models . . . . . . . . . . . . . . . . . . . 28
1.2 One class of leechers with downloading constraint . . . . . . . 29
1.3 P2P with and without constraints (many leechers) . . . . . . 31
1.4 P2P with and without constraints (few leechers) . . . . . . . 32
1.5 One class of leechers with downloading constraint . . . . . . . 34
1.6 One class of leechers without constraints . . . . . . . . . . . . 37
1.7 ODE vector field . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.8 Histograms for Central Limit Theorem . . . . . . . . . . . . . 43
1.9 Q-Q plots for Central Limit Theorem. . . . . . . . . . . . . . 44
1.10 Confidence intervals . . . . . . . . . . . . . . . . . . . . . . . 45

2.1 Exponential life-time and hypoexponential repair time . . . . 62
2.2 Hypoexponential life and repair time . . . . . . . . . . . . . . 65
2.3 Hypoexponential life-time and exponential repair times . . . 66

3.1 Transitions for CR model . . . . . . . . . . . . . . . . . . . . 73
3.2 Vector fields for free admission control. . . . . . . . . . . . . . 81
3.3 CR free model in sub-critical regime. . . . . . . . . . . . . . . 82
3.4 CR free model in critical regime. . . . . . . . . . . . . . . . . 82
3.5 CR critical regime with deterministic admission control . . . 85
3.6 Vector fields for probabilistic admission control. . . . . . . . . 87
3.7 CR critical regime with probabilistic admission control . . . . 87
3.8 Confidence ellipses for the free admission control. . . . . . . . 90
3.9 PWSDS solution in the one-dimensional case. . . . . . . . . . 92
3.10 Limit of stationary distribution . . . . . . . . . . . . . . . . . 95
3.11 Trajectories for fixed point in γ′ . . . . . . . . . . . . . . . . . 97
3.12 Kernel density estimation for fluctuations around fixed point 97
3.13 QQ-plots for fluctuations around fixed point . . . . . . . . . . 98

112



3.14 Confidence ellipses for probabilistic admission control . . . . 99

113



List of Tables

1.1 One class of leechers with downloading constraint . . . . . . . 29
1.2 P2P with and without constraints (many leechers) . . . . . . 30
1.3 P2P with and without constraints (few leechers) . . . . . . . 31
1.4 ODE vector field . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Parameters for Figures 2.1, 2.2 and 2.3. . . . . . . . . . . . . 67

3.1 Original and scaled parameters for the two-dimensional pro-
cess (X1, X2) and (X̃N

1 , X̃
N
2 ). . . . . . . . . . . . . . . . . . . 74

3.2 Full system and blocking probabilities. . . . . . . . . . . . . . 89
3.3 Scaling for the one dimensional processes (X) and (X̃N ). . . 91

114



Bibliography

[AA10] S. Asmussen and H. Albrecher. Ruin probabilities. Advanced
Series on Statistical Science & Applied Probability, 14. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, second
edition, 2010.

[AA14] S. A. AlQahtani and H. Ahmed. An admission control scheme
for secondary users in cognitive radio networks. In Proceedings
of the 11th IEEE International Conference on Networking,
Sensing and Control, pages 245–250, April 2014.

[AEJV13] U. Ayesta, M. Erausquin, M. Jonckheere, and I. M. Verloop.
Scheduling in a Random Environment: Stability and Asymp-
totic Optimality. IEEE/ACM Trans. Netw., 21(1):258–271,
2013.

[AMR11] L. Aspirot, E. Mordecki, and G. Rubino. Fluid Limits Applied
to Peer to Peer Network Analysis. In Quantitative Evaluation
of Systems (QEST), 2011 Eighth International Conference
on, pages 13 –20, sept. 2011.

[AMR13] L. Aspirot, E. Mordecki, and G. Rubino. Fluid Limit for the
Machine Repairman Model with Phase-Type Distributions.
In Quantitative Evaluation of Systems - 10th International
Conference, QEST 2013, Buenos Aires, Argentina, August
27-30, 2013. Proceedings, pages 139–154, 2013.

[ARR16] F. Akhtar, M. H. Rehmani, and M. Reisslein. White space:
Definitional perspectives and their role in exploiting spectrum
opportunities. Telecommunications Policy, 40(4):319 – 331,
2016.

115



[BEGFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear
Matrix Inequalities in System and Control Theory. Society for
Industrial and Applied Mathematics, 1994.
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